Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical chemical methods

CPE XI returned to Cairo, Egypt in 1997, and papers and posters were presented on adsorption, analytical methods, chemical/biological/treatment, groundwater studies, ion exchange, modeling, risk assessment, waste minimization and treatment, and for the first time, ISO 14001, which focuses on environmental management and quality systems. [Pg.1]

The vicissitudes that affected the journal mirrored the fragile situation of chemical research and practice in Portugal. In this context, it is not surprising that lecture notes and materials became an increasingly important bulk of the journal s publications. The journal assumed progressively its major function as an outlet for the dissemination of laboratory chemical techniques and analytical methods, chemical teaching and the popularization of chemistry through obituaries, news, etc. [Pg.275]

About the same time (1981), another international journal. Carbohydrate Polymers, was introduced. Its emphasis is on technical aspects of industrially important polysaccharides. It covers the study and uses of industrial applications of carbohydrate polymers in foods, textiles, paper, wood, adhesives, and pharmaceuticals and includes topics concerning structure and properties biological and industrial development analytical methods chemical, microbiological, and enzymatic modifications and interactions with other materials. [Pg.40]

Furthermore, molecular analysis is absolutely necessary for the petroleum industry in order to interpret the chemical processes being used and to evaluate the efficiency of treatments whether they be thermal or catalytic. This chapter will therefore present physical analytical methods used in the molecular characterization of petroleum. [Pg.39]

Thus, in the area of combinatorial chemistry, many compounds are produced in short time ranges, and their structures have to be confirmed by analytical methods. A high degree of automation is required, which has fueled the development of software that can predict NMR spectra starting from the chemical structure, and that calculates measures of similarity between simulated and experimental spectra. These tools are obviously also of great importance to chemists working with just a few compounds at a time, using NMR spectroscopy for structure confirmation. [Pg.518]

Following the movement of airborne pollutants requires a natural or artificial tracer (a species specific to the source of the airborne pollutants) that can be experimentally measured at sites distant from the source. Limitations placed on the tracer, therefore, governed the design of the experimental procedure. These limitations included cost, the need to detect small quantities of the tracer, and the absence of the tracer from other natural sources. In addition, aerosols are emitted from high-temperature combustion sources that produce an abundance of very reactive species. The tracer, therefore, had to be both thermally and chemically stable. On the basis of these criteria, rare earth isotopes, such as those of Nd, were selected as tracers. The choice of tracer, in turn, dictated the analytical method (thermal ionization mass spectrometry, or TIMS) for measuring the isotopic abundances of... [Pg.7]

In Section lA we indicated that analytical chemistry is more than a collection of qualitative and quantitative methods of analysis. Nevertheless, many problems on which analytical chemists work ultimately involve either a qualitative or quantitative measurement. Other problems may involve characterizing a sample s chemical or physical properties. Finally, many analytical chemists engage in fundamental studies of analytical methods. In this section we briefly discuss each of these four areas of analysis. [Pg.8]

Techniques responding to the absolute amount of analyte are called total analysis techniques. Historically, most early analytical methods used total analysis techniques, hence they are often referred to as classical techniques. Mass, volume, and charge are the most common signals for total analysis techniques, and the corresponding techniques are gravimetry (Chapter 8), titrimetry (Chapter 9), and coulometry (Chapter 11). With a few exceptions, the signal in a total analysis technique results from one or more chemical reactions involving the analyte. These reactions may involve any combination of precipitation, acid-base, complexation, or redox chemistry. The stoichiometry of each reaction, however, must be known to solve equation 3.1 for the moles of analyte. [Pg.38]

Analytical chemistry is more than a collection of techniques it is the application of chemistry to the analysis of samples. As you will see in later chapters, almost all analytical methods use chemical reactivity to accomplish one or more of the following—dissolve the sample, separate analytes and interferents, transform the analyte to a more useful form, or provide a signal. Equilibrium chemistry and thermodynamics provide us with a means for predicting which reactions are likely to be favorable. [Pg.175]

When the analytical method s selectivity is insufficient, it may be necessary to separate the analyte from potential interferents. Such separations can take advantage of physical properties, such as size, mass or density, or chemical properties. Important examples of chemical separations include masking, distillation, and extractions. [Pg.224]

The determination of an analyte s concentration based on its absorption of ultraviolet or visible radiation is one of the most frequently encountered quantitative analytical methods. One reason for its popularity is that many organic and inorganic compounds have strong absorption bands in the UV/Vis region of the electromagnetic spectrum. In addition, analytes that do not absorb UV/Vis radiation, or that absorb such radiation only weakly, frequently can be chemically coupled to a species that does. For example, nonabsorbing solutions of Pb + can be reacted with dithizone to form the red Pb-dithizonate complex. An additional advantage to UV/Vis absorption is that in most cases it is relatively easy to adjust experimental and instrumental conditions so that Beer s law is obeyed. [Pg.394]

The earliest examples of analytical methods based on chemical kinetics, which date from the late nineteenth century, took advantage of the catalytic activity of enzymes. Typically, the enzyme was added to a solution containing a suitable substrate, and the reaction between the two was monitored for a fixed time. The enzyme s activity was determined by measuring the amount of substrate that had reacted. Enzymes also were used in procedures for the quantitative analysis of hydrogen peroxide and carbohydrates. The application of catalytic reactions continued in the first half of the twentieth century, and developments included the use of nonenzymatic catalysts, noncatalytic reactions, and differences in reaction rates when analyzing samples with several analytes. [Pg.623]

Chemical kinetic methods are particularly useful for reactions that are too slow for a convenient analysis by other analytical methods. In addition, chemical kinetic methods are often easily adapted to an automated analysis. For reactions with fast kinetics, automation allows hundreds (or more) of samples to be analyzed per hour. Another important application of chemical kinetic... [Pg.659]

Aqueous Acrylamide, Forms 260-951-88, Analytical Method PA1A 46, Chemicals and Metals Department, The Dow Chemical Company, Midland, Mich., 1976. [Pg.137]

Many of these compounds ate highly colored and have found use as dyes and photographic chemicals. Several pharmaceuticals and pesticides are members of this class. An extremely sensitive analytical method for low hydrazine concentrations is based on the formation of a colored azine. They are also useful in heterocycle formation. Several reviews are available covering the chemistry of hydrazones (80,89) and azines (90). [Pg.281]

Acetylene Derived from Hydrocarbons The analysis of purified hydrocarbon-derived acetylene is primarily concerned with the determination of other unsaturated hydrocarbons and iaert gases. Besides chemical analysis, physical analytical methods are employed such as gas chromatography, ir, uv, and mass spectroscopy. In iadustrial practice, gas chromatography is the most widely used tool for the analysis of acetylene. Satisfactory separation of acetylene from its impurities can be achieved usiag 50—80 mesh Porapak N programmed from 50—100°C at 4°C per minute. [Pg.378]

The fermentation-derived food-grade product is sold in 50, 80, and 88% concentrations the other grades are available in 50 and 88% concentrations. The food-grade product meets the Vood Chemicals Codex III and the pharmaceutical grade meets the FCC and the United States Pharmacopoeia XK specifications (7). Other lactic acid derivatives such as salts and esters are also available in weU-estabhshed product specifications. Standard analytical methods such as titration and Hquid chromatography can be used to determine lactic acid, and other gravimetric and specific tests are used to detect impurities for the product specifications. A standard titration method neutralizes the acid with sodium hydroxide and then back-titrates the acid. An older standard quantitative method for determination of lactic acid was based on oxidation by potassium permanganate to acetaldehyde, which is absorbed in sodium bisulfite and titrated iodometricaHy. [Pg.515]


See other pages where Analytical chemical methods is mentioned: [Pg.245]    [Pg.14]    [Pg.245]    [Pg.14]    [Pg.77]    [Pg.1136]    [Pg.228]    [Pg.67]    [Pg.8]    [Pg.21]    [Pg.50]    [Pg.150]    [Pg.262]    [Pg.368]    [Pg.639]    [Pg.666]    [Pg.812]    [Pg.492]    [Pg.54]    [Pg.53]    [Pg.192]    [Pg.276]    [Pg.416]    [Pg.486]    [Pg.515]    [Pg.1]    [Pg.116]    [Pg.83]    [Pg.132]   
See also in sourсe #XX -- [ Pg.38 , Pg.64 ]




SEARCH



Analytical methods chemical analysis

Analytical methods, chemical physical

Chemical perspective analytical methods

Chemical warfare agents analytical methods

Endogenous compounds chemical analytical methods

© 2024 chempedia.info