Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cholesterol analysis

Two nucleation processes important to many people (including some surface scientists ) occur in the formation of gallstones in human bile and kidney stones in urine. Cholesterol crystallization in bile causes the formation of gallstones. Cryotransmission microscopy (Chapter VIII) studies of human bile reveal vesicles, micelles, and potential early crystallites indicating that the cholesterol crystallization in bile is not cooperative and the true nucleation time may be much shorter than that found by standard clinical analysis by light microscopy [75]. Kidney stones often form from crystals of calcium oxalates in urine. Inhibitors can prevent nucleation and influence the solid phase and intercrystallite interactions [76, 77]. Citrate, for example, is an important physiological inhibitor to the formation of calcium renal stones. Electrokinetic studies (see Section V-6) have shown the effect of various inhibitors on the surface potential and colloidal stability of micrometer-sized dispersions of calcium oxalate crystals formed in synthetic urine [78, 79]. [Pg.338]

The first application of the Gaussian distribution is in medical decision making or diagnosis. We wish to determine whether a patient is at risk because of the high cholesterol content of his blood. We need several pieces of input information an expected or normal blood cholesterol, the standard deviation associated with the normal blood cholesterol count, and the blood cholesterol count of the patient. When we apply our analysis, we shall anive at a diagnosis, either yes or no, the patient is at risk or is not at risk. [Pg.17]

The probabilistic nature of a confidence interval provides an opportunity to ask and answer questions comparing a sample s mean or variance to either the accepted values for its population or similar values obtained for other samples. For example, confidence intervals can be used to answer questions such as Does a newly developed method for the analysis of cholesterol in blood give results that are significantly different from those obtained when using a standard method or Is there a significant variation in the chemical composition of rainwater collected at different sites downwind from a coalburning utility plant In this section we introduce a general approach to the statistical analysis of data. Specific statistical methods of analysis are covered in Section 4F. [Pg.82]

In milk fat, cholesterol is associated with Hpoproteins in the milk fat globule. It is also a component of animal membranes and controls rigidity and permeabihty of the membranes. Cholesterol has interesting surface properties and can occur in Hquid crystalline forms. Plants contain sterols such as P-sitosterol [83-46-5] (4b) or stigmasterol [83-48-7] (4c). Their functions in plant metaboHsm are not yet well understood. Analysis of sterols has proven useful for detection of adulteration of edible fats (9). [Pg.124]

Glucose [50-99-7] urea [57-13-6] (qv), and cholesterol [57-88-5] (see Steroids) are the substrates most frequentiy measured, although there are many more substrates or metaboUtes that are determined in clinical laboratories using enzymes. Co-enzymes such as adenosine triphosphate [56-65-5] (ATP) and nicotinamide adenine dinucleotide [53-84-9] in its oxidized (NAD" ) or reduced (NADH) [58-68-4] form can be considered substrates. Enzymatic analysis is covered in detail elsewhere (9). [Pg.38]

In situ quantitation Fluorimetric analysis was made with long-wavelength UV light (2exc = 365 nm, X(, > 430 nm). The detection limit on HPTLC plates that were analyzed in a moist state was 25 ng cholesterol per chromatogram zone (Fig. 1). [Pg.193]

Detection and result The developed chromatogram was dried in a stream of cold air, immersed in the reagent solution for 1 s and heated to 80 °C for 20 — 30 min (until optimal color development occurred). Yellow to brown-colored zones were produced on a pale yellow-colored background these were suitable for quantitative analysis. The detection limits for cholesterol hRf 20 — 25) and coprostanol 25 — 30) were a few nanograms per chromatogram zone. [Pg.386]

Cholesterol Treatment Trialists (CTT) Collaborators (2005) Efficacy and safety of cholesterol-lowering treatment prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet 366 1267-1278... [Pg.599]

Solberg and co-workers have applied discriminate analysis of clinical laboratory tests combined with careful clinical and anatomic diagnoses of liver disease in order to determine which combinations of the many dozen liver diagnostic tests available are the bes t ( ). These authors found that the measurement of GPT, GMT, GOT, ALP and ceruloplasmin were the most useful enzymatic tests, when combined with other non-enzymatic tests such as the measurement of bilirubin, cholesterol, hepatitis-B associated Australian antigen, etc. Another group of highly useful enzymes, not discussed in this review, are those clotting factors and the enzyme cholinesterase which are synthesized by the liver cells. [Pg.208]

Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) have been shown to improve vascular outcomes due to their cholesterol-lowering effects as well as multiple pleiotropic effects. In high-risk populations, statin therapy is known to reduce the risk of vascular events such as myocardial infarction and stroke. A meta-analysis of 10 trials involving 79,494 subjects showed that statin therapy reduced the incidence of stroke by 18%, major coronary events by 27%, and all-cause mortality by 15%. The SPARCL trial recently showed that high-dose HMG-CoA reductase inhibitors prevent recurrent stroke and transient ischemic attacks. ... [Pg.101]

BROWN L, ROSNER B, wiLLET w w, SACKS F M (1999) Cholesterol-loweiing effeects of dietary fiber a meta-analysis, American Journal of Clinical Nutrition, 69, 30-42. [Pg.295]

Studies conducted by Barenghi eta.1. (1990) and Lodge etal. (1993) independently have demonstrated the facile, multicomponent analysis of a wide range of PUFA-derived peroxidation products (e.g. conjugated dienes, epoxides and oxysterols) in samples of oxidized LDL by high-field H-NMR spectroscopy. Figure 1.9 shows the applications of this technique to the detection of cholesterol oxidation products (7-ketocholesterol and the 5a, 6a and 5/3,60-epoxides) in isolated samples of plasma LDL pretreated with added coppcr(Il) or an admixture of this metal ion with H2O2, an experiment conducted in the authors laboratories. [Pg.16]

Over the last decade, several studies in tens of thousands of patients have revealed that lowering cholesterol, specifically lowering LDL cholesterol with statins, is effective for both primary and secondary prevention of IHD-related events. Statins shown to decrease morbidity and mortality associated with IHD include lovastatin, simvastatin, pravastatin, and atorvas-tatin.22,23 A recent meta-analysis showed that the risk of major adverse cardiac events is reduced by 21% with the use of statins in patients at high risk for IHD-related events.23... [Pg.74]

Kansy et al. [550] reported the permeability-lipophilicity relationship for about 120 molecules based on the 10% wt/vol egg lecithin plus 0.5% wt/vol cholesterol in dodecane membrane lipid (model 15.0 in Table 7.3), shown in Fig. 7.23. The vertical axis is proportional to apparent permeability [see Eq. (7.9)]. For log Kd > 1.5, Pa decreases with increasing log Kd. In terms of characteristic permeability-lipophilicity plots of Fig. 7.19, the Kansy result in Fig. 7.23 resembles the bilinear case in Fig. (7.19d). Some of the Pa values may be underestimated for the most lipophilic molecules because membrane retention was not considered in the analysis. [Pg.166]

Faulkner, LE, Panagotopulos, SE, Johnson, JD, Woollett, LA, Hui, DY, Witting, SR, Maiorano, JN, and Davidson, WS, 2008. An analysis of the role of a retroendocytosis pathway in ATP-binding cassette transporter (ABCA1)—Mediated cholesterol efflux from macrophages. J Lipid Res, M800048-JLR800200. [Pg.343]

Shiffman D et al. Large scale gene expression analysis of cholesterol-loaded macrophages. J Biol Chem 2000 275 37324-37332. [Pg.117]

Currently, there are a number of systemic and intestine-selective MTP inhibitors, including lomitapide (23, BMS-201038, AEGR-733), implitapide (24), JTT-130, SLx-4090, and R-256918 (latter three structures not disclosed) believed to be in active development [60]. In a meta-analysis of three Phase II clinical trials, lomitapide as monotherapy or in combination with ezetimibe, atorvastatin, or fenofibrate significantly reduced LDL cholesterol (up to 35% as monotherapy and 66% in combination with atorvastatin) and was well tolerated with less than 2% discontinuation due to abnormal liver function [61]. Lomitapide has also been granted orphan drug status for the treatment of homozygous familial hypercholesterolemia [59]. Results of a Phase II study of JTT-130 for type 2 diabetes are expected in August 2010 [59,60]. [Pg.117]

A new cholesterol flow injection analysis biosensor has also been described as an application of the H2O2 ECL sensor56. In that work, the luminol electrochemiluminescence, previously studied in aqueous media, was implemented in Veronal buffer added of 0.3% triton X-100 (v/v), 0.3% PEG and 0.4% cholate to enable the solubilisation of the cholesterol and then its efficient oxidation catalyzed by the immobilized cholesterol oxidase. The ECL reaction occurred thus in a micellar medium and the performances of the H2O2 ECL sensor were investigated. [Pg.171]


See other pages where Cholesterol analysis is mentioned: [Pg.453]    [Pg.360]    [Pg.453]    [Pg.360]    [Pg.15]    [Pg.38]    [Pg.346]    [Pg.1030]    [Pg.122]    [Pg.407]    [Pg.408]    [Pg.1]    [Pg.185]    [Pg.206]    [Pg.215]    [Pg.70]    [Pg.47]    [Pg.4]    [Pg.737]    [Pg.173]    [Pg.55]    [Pg.21]    [Pg.25]    [Pg.375]    [Pg.514]    [Pg.518]    [Pg.328]    [Pg.108]    [Pg.237]    [Pg.193]    [Pg.207]    [Pg.209]   
See also in sourсe #XX -- [ Pg.232 ]




SEARCH



© 2024 chempedia.info