Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amylase, specificity

The function of Jisper Uis fermentation appears to be primarily the breakdown of protein and polysaccharides by secreted proteases and amylases. Replacement oiPispergillis by chemical or enzymatic hydrolysis has no major impact on the organoleptic properties of the sauce. Likewise, inoculation with a pure culture of Ixictobacillus delbrueckii to carry out the acetic acid fermentation produces a normal product. The S. rouxii and Toru/opsis yeasts, however, are specifically required for proper flavor development. [Pg.393]

Unlike many of the catalysts that chemists use in the laboratory, enzymes are usually specific in their action. Often, in tact, an enzyme will catalyze only a single reaction of a single compound, called the enzyme s substrate. For example, the enzyme amylase, found in the human digestive tract, catalyzes only the hydrolysis of starch to yield glucose cellulose and other polysaccharides are untouched by amylase. [Pg.1041]

Different enzymes have different specificities. Some, such as amylase, are specific for a single substrate, but others operate on a range of substrates. Papain, for instance, a globular protein of 212 amino acids isolated from papaya fruit, catalyzes the hydrolysis of many kinds of peptide bonds. In fact, it s this ability to hydrolyze peptide bonds that makes papain useful as a meat tenderizer and a cleaner for contact lenses. [Pg.1041]

Drought also has a profound effect on protein synthesis. In many plant tissues, a reduced water potential causes a reduction of total protein synthesis and a rapid dissociation of polyribosomes. The latter has been shown not to be the consequence of increase in ribonuclease activity (Hsiao, 1973 Dhindsa Bewley, 1976). For a specific protein, Jacobsen, Hanson Chandler (1986) have shown in barley leaves that water stress enhances the synthesis of one of the a-amylase isozymes. Using a cDNA probe they found that water-stressed leaves contained much more a-amylase mRNA than unstressed plants. [Pg.164]

Hehre and coworkers showed that beta amylase from sweet potatoes, an inverting, a-specific exo-(l 4)-glucanase, catalyzes the hydrolysis of jS-maltosyl fluoride with complex kinetics which indicated the participation of two substrate molecules in the release of fluoride ion. Furthermore, the reaction was strongly accelerated by the addition of methyl ) -maltoside. Hydrolysis of a-maltosyl fluoride, on the other hand, obeyed Michaelis-Menten kinetics. The main product with both a- and yj-maltosyl fluoride was )S-maltose. The results with )3-maltosyl fluoride were interpreted by the assumption of a glycosylation reaction preceding hydrolysis by which a malto-tetraoside is formed by the replacement of fluoride ion by a second substrate molecule or added methyl -maltoside (see Scheme 5). [Pg.358]

Seligson s group (95) has published a similar turbidimetric procedure but used nephelometry to measure continuously the effect of lipase on the light scattering of an olive oil emulsion. The instrumentation and approach is the same as that described above for the nephelometric determination of amylase. The method according to the authors is fast and precise with good specificity and sensitivity. The short time required for analysis makes it suitable for emergency use. The technical simplicity permits this method to be easily automated, and it appears to be the lipase method of choice. [Pg.214]

There is evidence that protease inhibitors selectively regulate the activity of specific digestive enzymes at the level of gene expression (Rosewicz et al., 1989). Specifically, soybean trypsin inhibitor increases secretion of proteases, including a form of trypsin that is resistant to inhibition but does not cause an increase in amylase secretion. Although the relationships between protease inhibitors and exocrine pancreatic secretion have received the most attention, pancreatic secretion is increased when potato fiber is added to the diet (Jacob et al., 2000), although the mechanism and signaling pathway have not been elucidated. [Pg.166]

The diastase activity was traditionally determined according to the Schade method in the earlier years (Schade et al., 1958). One unit of diastase activity (or more specifically, a-amylase), DN, is defined as that amoimt of enz)nne that converts 0.01 g of starch to the prescribed endpoint in 1 h at 37 °C under the experimental conditions. In this assay, a standard solution of starch, which reacts with iodine to produce a color solution, is used as a substrate for honey enzymes under the standard conditions (Rendleman, 2003). A recently developed procedure uses an insoluble, dyed starch substrate (Persano Oddo and Pulcini, 1999). As this substrate is hydrolyzed by ot-amylase, soluble dyed starch fragments are released into solution. After reaction termination and insoluble substrate removal by centrifugation, absorbance of the supernatant solution (at 620 nm) is measured. The absorbance is proportional to the diastase activity. This procedure has been widely adopted in the honey industry due to the convenience of a commercially available substrate and the simple assay format. [Pg.106]

Diagnosis of acute pancreatitis is based on the patient s history and presenting signs and symptoms. Evaluation of laboratory results, specifically the serum amylase and lipase, aids in diagnosis. Serum amylase is elevated early in the disease process but may return to normal within 12 hours.10 Serum lipase will remain elevated for days after the acute event and may lend itself more to the diagnosis depending on when the patient presents for evaluation.11... [Pg.339]

Saliva begins the process of chemical digestion with salivary amylase. This enzyme splits starch molecules into fragments. Specifically, polysaccharides, or starches, are broken down into maltose, a disaccharide consisting of two glucose molecules. Salivary amylase may account for up to 75% of starch digestion before it is denatured by gastric acid in the stomach. [Pg.286]

Payre, N., Cottaz, S. and Driguez, H. (1995). Chemoenzymatic synthesis of a modified pentasaccharide as a specific substrate for a sensitive assay of alpha-amylase by fluorescence quenching. Angew. Chem. Int. Ed. Engl. 34, 1239-1241. [Pg.297]

Fischer, brilliant results were achieved, and in succession the a-amylases of pig pancreas, of Bacillus subtilis, of human saliva, of human pancreas, and of Aspergillus oryzae, and the /3-amylase of malt, were successfully crystallized. Important biological deductions were gained from this study whereas the amylases of human pancreas and saliva cannot be distinguished from one another, amylases from pig pancreas and from human pancreas are different. These differences are manifested in molecular weight, crystalline forms, electrophoretic mobility, and influence of the pH on the activity however, all the amylases have the same specific biochemical action. The identity of the enzymes seems to be dependent on the species and not on the organ. Interest in biologically active proteins led Meyer to a study of the protein hormones, a field in which he was very active at the time of his death. [Pg.475]

Serum lipase is specific to the pancreas, and concentrations are usually elevated. The increases persist longer than serum amylase elevations and can be detected after the amylase has returned to normal. [Pg.319]

The purification of some enzymes inactivates them because substances essential for their activity but not classed as a prosthetic group are removed. These are frequently inorganic ions which are not explicit participants in the reaction. Anionic activation seems to be non-specific and different anions are often effective. Amylase (EC 3.2.1.1), for example, is activated by a variety of anions, notably chloride. Cationic activation is more specific, e.g. magnesium is particularly important in reactions involving ATP and ADP as substrates. In cationic activation it seems very likely that the cation binds initially to the substrate rather than to the enzyme. [Pg.267]


See other pages where Amylase, specificity is mentioned: [Pg.110]    [Pg.142]    [Pg.253]    [Pg.250]    [Pg.107]    [Pg.476]    [Pg.483]    [Pg.340]    [Pg.341]    [Pg.461]    [Pg.285]    [Pg.328]    [Pg.358]    [Pg.175]    [Pg.223]    [Pg.473]    [Pg.453]    [Pg.57]    [Pg.92]    [Pg.187]    [Pg.188]    [Pg.189]    [Pg.189]    [Pg.199]    [Pg.285]    [Pg.348]    [Pg.112]    [Pg.263]    [Pg.149]    [Pg.286]    [Pg.175]    [Pg.176]    [Pg.202]    [Pg.236]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



© 2024 chempedia.info