Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia standardization

Greenberg AE, Trussell RR, Clesceri LS, eds. 1985. Nitrogen (ammonia) standard methods for the examination of water and wastewater. Washington, DC Ameriean Public Health Association, American Waterworks Association, Water Pollution Control Federation. 374-391. [Pg.194]

In analogy with a flxed bed reactor (W7f nhj), the kinetic data are represented by T/fNHa. where L stands for the length of the catalyst coating and Fnhj is the molar flow rate of ammonia. Standard conditions consisted of a mixture of 3 vol % NH3 and 20 vol% O2 at a total flow rate of 400ml/min. A hotspot temperature of 6 K was measured at 50% conversion of 3 mol% ammonia. [Pg.828]

Compare the colour obtained with that given by the low or the high ammonia standards, as described in the estimation of blood urea. [Pg.454]

Ammonia may be estimated by dissolving the gas in a known volume of standard acid and then back-titrating the excess acid. In a method widely used for the determination of basic nitrogen in organic substances (the Kjeldahl method), the nitrogenous material is converted into ammonium sulphate by heating with concentrated sulphuric acid. The ammonia is then driven off by the action of alkali and absorbed in standard acid. [Pg.222]

Ammonia present in very small quantities in solution may be estimated by comparing the intensity of colour produced with Nessler s reagent (p. 439) with standard colours, using a simple form of colorimeter called a Nessleriser . [Pg.222]

By the evolution of ammonia with Devarda s alloy in alkaline solution in absence of ammonium ions this is used quantitatively, the ammonia being absorbed in excess standard acid and the excess acid back-titrated. [Pg.243]

Addition of silver nitrate to a solution of a chloride in dilute nitric acid gives a white precipitate of silver chloride, AgCl, soluble in ammonia solution. This test may be used for gravimetric or volumetric estimation of chloride the silver chloride can be filtered off, dried and weighed, or the chloride titrated with standard silver nitrate using potassium chromate(VI) or fluorescein as indicator. [Pg.348]

The choice of type of derivative should be based on whether the chloride or anhydride is aliphatic or aromatic, because this factoi largely determines the reactivity. Aliphatic acid chlorides are best converted into their anilides, as in 4 above aromatic acid chloride may be similarly converted into their anilides, or they may be converted into their amides by shaking with an excess of ammonia (p, 120). (M.ps., pp. 544-545.) Aliphatic acid anhydrides should be converted into their crystalline anilides, but aromatic acid anhydrides arc best hydrolysed to the acid, which can then be converted into one of the standard derivatives (p. 349). [Pg.366]

Titration. The solution of ammonia absorbed in saturated boric acid may now be titrated as an alkali directly with 0 025 A.HCl (best obtained by dilution of commercially available standard A.HCl in a graduated flask). Three drops of indicator (mixed methyl-red/methyl-ene-blue being most satisfactory) are added to the liquid in the receiver and the 0 025 A.HCl run in from an accurate burette. [Pg.496]

The method is based on the conversion of urea to amnionium carbonate and the estimation of the latter by titration with standard acid. For this purpose, two equal quantities of urea (or urine) are measured out into two flasks A and B. A is treated with 10 ml. of a strong urease preparation and some phenol-phthalein, warm water is added and the mixture is adjusted by the addition of V/io HCl from a burette A until the red colour is just discharged. This brings the mixture to about pH 8 (the optimum for urease) and also prevents loss of ammonia. [Pg.520]

A standard method for prepanng sodium cyclopentadienide (CsHsNa) is by the reaction of cyclopentadiene with a solution of NaNH2 in liquid ammonia Write a net ionic equation for this reaction identify the acid and the base and use curved arrows to track the flow of electrons... [Pg.470]

A standard method for the preparation of an a ammo acid uses a bromo carboxylic acids as the substrate and aqueous ammonia as the nucleophile... [Pg.816]

Nucleophilic substitution by ammonia on a halo acids (Section 19 16) The a halo acids obtained by halogenation of car boxylic acids under conditions of the Hell-Volhard-Zelinsky reaction are reac tive substrates in nucleophilic substitu tion processes A standard method for the preparation of a ammo acids is dis placement of halide from a halo acids by nucleophilic substitution using excess aqueous ammonia... [Pg.928]

Direct Titrations. The most convenient and simplest manner is the measured addition of a standard chelon solution to the sample solution (brought to the proper conditions of pH, buffer, etc.) until the metal ion is stoichiometrically chelated. Auxiliary complexing agents such as citrate, tartrate, or triethanolamine are added, if necessary, to prevent the precipitation of metal hydroxides or basic salts at the optimum pH for titration. Eor example, tartrate is added in the direct titration of lead. If a pH range of 9 to 10 is suitable, a buffer of ammonia and ammonium chloride is often added in relatively concentrated form, both to adjust the pH and to supply ammonia as an auxiliary complexing agent for those metal ions which form ammine complexes. A few metals, notably iron(III), bismuth, and thorium, are titrated in acid solution. [Pg.1167]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

Methanol can be converted to a dye after oxidation to formaldehyde and subsequent reaction with chromatropic acid [148-25-4]. The dye formed can be deterruined photometrically. However, gc methods are more convenient. Ammonium formate [540-69-2] is converted thermally to formic acid and ammonia. The latter is trapped by formaldehyde, which makes it possible to titrate the residual acid by conventional methods. The water content can be determined by standard Kad Eischer titration. In order to determine iron, it has to be reduced to the iron(II) form and converted to its bipyridyl complex. This compound is red and can be determined photometrically. Contamination with iron and impurities with polymeric hydrocyanic acid are mainly responsible for the color number of the merchandized formamide (<20 APHA). Hydrocyanic acid is detected by converting it to a blue dye that is analyzed and deterruined photometrically. [Pg.509]

Reductions. Hydrazine is a very strong reducing agent. In the presence of oxygen and peroxides, it yields primarily nitrogen and water with more or less ammonia and hydrazoic acid [7782-79-8]. Based on standard electrode potentials, hydrazine in alkaline solution is a stronger reductant than sulfite but weaker than hypophosphite in acid solution, it falls between and Ti ( 7). [Pg.277]

The reactor effluent, containing 1—2% hydrazine, ammonia, sodium chloride, and water, is preheated and sent to the ammonia recovery system, which consists of two columns. In the first column, ammonia goes overhead under pressure and recycles to the anhydrous ammonia storage tank. In the second column, some water and final traces of ammonia are removed overhead. The bottoms from this column, consisting of water, sodium chloride, and hydrazine, are sent to an evaporating crystallizer where sodium chloride (and the slight excess of sodium hydroxide) is removed from the system as a soHd. Vapors from the crystallizer flow to the hydrate column where water is removed overhead. The bottom stream from this column is close to the hydrazine—water azeotrope composition. Standard materials of constmction may be used for handling chlorine, caustic, and sodium hypochlorite. For all surfaces in contact with hydrazine, however, the preferred material of constmction is 304 L stainless steel. [Pg.282]

Devarda s Method. Nitrogen in nitrates or nitric acid also may be deterrnined by the Kjeldahl method or by Devarda s method. The latter is both convenient and accurate when no organic nitrogen is present. The nitrate is reduced by Devarda s alloy to ammonia in an alkaline solution. The ammonia is distilled and titrated with standard acid. [Pg.47]

Space Velocity. The space velocity is the ratio of the volumetric rate of gas at standard conditions to the volume of the catalyst. Generally, the percentage of ammonia in the existing gas decreases as space velocity increases however, the same volume of catalyst at the increased space velocities is capable of producing more ammonia (Fig. 4) (27). Normally space velocities for commercial operations are between 8,000 and 60, 000 h . ... [Pg.340]

A.lkanolamine Process. Carbon dioxide is an acidic gas that reacts reversibly with aqueous alkaline solution to form a carbonate adduct. This adduct decomposes upon the addition of low level heat faciUtating CO2 removal. An aqueous solution of 15—20 wt % monoethanolamine (MEA) was the standard method for removing CO2 in early ammonia plants. [Pg.349]

Ak ammonia piping should be standard (Schedule 40) or extra heavy (Schedule 80) steel having welded or screwed joints, respectively. Galvanized piping or brazed joints should never be used. Ammonia accepted for pipeline transportation must meet the fokowing specifications NH, 99.5 vol % min dissolved inerts, 0.16% max, ok, 5 ppm max and water, in the form of steam condensate, 0.2% min, or distiked water, 0.5% max. [Pg.354]

Ammonia and ammonium ions in industrial water streams, including waste-water streams, can be determined by either of two methods (ASTM Procedure D1426). In the first, the sample is buffered to a pH of 7.4 and distilled into a solution of boric acid where the ammonia nitrogen is deterrnined colorimetricaHy with Nessler reagents or titrated using standard sulfuric acid. [Pg.357]

Current OSHA standards specify the threshold limit value (TLV) 8-h exposure to ammonia as 50 ppm (35 mg/m ). However, the ACGIH recommends a TLV of 25 ppm (96). Respiratory protection should be provided for workers exposed to ammonia. Protective clothing such as mbber aprons, boots, gloves, and goggles should be worn when handling ammonia. [Pg.357]

A number of simple, standard methods have been developed for the analysis of ammonium compounds, several of which have been adapted to automated or instmmental methods. Ammonium content is most easily deterrnined by adding excess sodium hydroxide to a solution of the salt. Liberated ammonia is then distilled into standard sulfuric acid and the excess acid titrated. Other methods include colorimetry (2) and the use of a specific ion electrode (3). [Pg.362]


See other pages where Ammonia standardization is mentioned: [Pg.433]    [Pg.582]    [Pg.90]    [Pg.385]    [Pg.125]    [Pg.453]    [Pg.453]    [Pg.433]    [Pg.582]    [Pg.90]    [Pg.385]    [Pg.125]    [Pg.453]    [Pg.453]    [Pg.73]    [Pg.492]    [Pg.272]    [Pg.245]    [Pg.297]    [Pg.368]    [Pg.455]    [Pg.36]    [Pg.103]    [Pg.98]    [Pg.230]    [Pg.489]    [Pg.275]    [Pg.178]    [Pg.42]    [Pg.353]    [Pg.45]    [Pg.361]   
See also in sourсe #XX -- [ Pg.47 , Pg.208 ]




SEARCH



Ammonia standard

Ammonia standard enthalpy

© 2024 chempedia.info