Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino alcohols alkylation

Some substituted alkyl hydrogen sulfates are readily prepared. Eor example, 2-chloroethyl hydrogen sulfate [36168-93-1] is obtained by treating ethylene chlorohydrin with sulfuhc acid or amidosulfuhc acid. Heating hydroxy sulfates of amino alcohols produces the corresponding sulfuhc monoester... [Pg.200]

Acrylic Esters. A procedure has been described for preparation of higher esters from methyl acrylate that illustrates the use of an acid catalyst together with the removal of one of the products by azeotropic distillation (112). Another procedure for the preparation of butyl acrylate, secondary alkyl acrylates, and hydroxyalkyl acrylates using -toluenesulfonic acid as a catalyst has been described (113). Alurninumisopropoxide catalyzes the reaction of amino alcohols with methyl acrylate and methyl methacrylate. A review of the synthesis of acryhc esters by transesterification is given in Reference 114 (see... [Pg.383]

An interesting case of ipso intramolecular alkylation has been observed in the case of the acid-promoted cyclization of the amino alcohols (61). With trifluoroacetic acid the major product was the rearranged thienopyridine (62), whereas with polyphosphoric acid the product formed exclusively was the non-rearranged thienopyridine (63) (82CC793). [Pg.53]

These investigations have followed three main lines, (1) alterations in the amino-alcohol nucleus, (2) variation in the alkyl or acyl side-chains, (3) influence of stereoisomerism. Tropine and ecgonine, the basic components of atropine and cocaine, lend themselves to such investigations, but scopine, the amino-alcohol of hyoscine is so labile that systematic modification of this alkaloid has not yet been possible. [Pg.107]

Condensation of the anion obtained on reaction of acetonitrile with sodium amide, with o-chlorobenzophenone (36), affords the hydroxynitrile, 37. Catalytic reduction leads to the corresponding amino alcohol (note that the benzhydryl alcohol is not hydrogenolyzed). Reductive alkylation with formaldehyde and hydrogen in the presence of Raney nickel gives the antitussive a-gent, chlorphedianol (39). °... [Pg.46]

Reaction of dibenzylamine with ethylene oxide affords the amino alcohol, 82. Treatment of that product with thionyl chloride gives the a-sympathetic blocking agent, dibenamine (83). (Condensation of phenol with propylene chlorohydrin (84) gives the alcohol, 85. Reaction with thionyl chloride affords the chloride (86). Use of the halide to alkylate ethanolamine affords the secondary amine (87). Alkylation of this last with benzyl chloride... [Pg.55]

In fact, esters of amino alcohols and 2,2-disubstituted plii iiylacetic acids show useful antitussive activity the mecha-lM iii of action may include bronchiodilation. Double alkylation III the anion of phenylacetonitrile with 1,4-dibromobutane gives llit i cyclopentane-substituted derivative (33). Saponification... [Pg.89]

In an alternate approach to the preparation of compounds containing the additional ring, haloamide, 41 (obtained from the aminobenzophenone and bromoacetylbromide) is alkylated with etha-nolamine to afford 42. Treatment of the amino alcohol in acetic acid affords the carbonyl addition product, 43, at the same time... [Pg.369]

That this is not a general observation is indicated by the fact that piperactizine (95), in which carbon again replaced nitrogen, obtained by alkylation of amino alcohol, 94, with the halide (73) is used mainly as a major tranquilizer. [Pg.386]

In the 3-adrenergic blocking drug pyrroxan (48), the catechol moiety is masked in a doxane ring. The synthesis begins by alkylation of phenyl acetonitrile by 2-chloroethanol to produce alcohol Recuction converts this to amino alcohol which... [Pg.191]

As described in Section 2.3.2, vinylaziridines are versatile intermediates for the stereoselective synthesis of (E)-alkene dipeptide isosteres. One of the simplest methods for the synthesis of alkene isosteres such as 242 and 243 via aziridine derivatives of type 240 and 241 (Scheme 2.59) involves the use of chiral anti- and syn-amino alcohols 238 and 239, synthesizable in turn from various chiral amino aldehydes 237. However, when a chiral N-protected amino aldehyde derived from a natural ot-amino acid is treated with an organometallic reagent such as vinylmag-nesium bromide, a mixture of anti- and syn-amino alcohols 238 and 239 is always obtained. Highly stereoselective syntheses of either anti- or syn-amino alcohols 238 or 239, and hence 2,3-trans- or 2,3-as-3-alkyl-2-vinylaziridines 240 or 241, from readily available amino aldehydes 237 had thus hitherto been difficult. Ibuka and coworkers overcame this difficulty by developing an extremely useful epimerization of vinylaziridines. Palladium(0)-catalyzed reactions of 2,3-trons-2-vinylaziri-dines 240 afforded the thermodynamically more stable 2,3-cis isomers 241 predominantly over 240 (241 240 >94 6) through 7i-allylpalladium intermediates, in accordance with ab initio calculations [29]. This epimerization allowed a highly stereoselective synthesis of (E) -alkene dipeptide isosteres 243 with the desired L,L-... [Pg.64]

In general, an ethyl(monoalkoxy)zinc is formed with amino alcohols6. Therefore, in the presence of an equimolar amount of chiral amino alcohol, a slow reduction of benzaldehyde to benzyl alcohol is observed rather than alkylation1. Alkylation only occurs with a ratio of diethylzinc to amino alcohol greater than equimolar. Consequently, a two-zinc species is postulated to be the actual catalyst1, n. [Pg.166]

With the stcrically constrained /(-amino alcohols N-P asymmetric amplification phenomena were observed similar to the effects found with 3-e.Y0-(dimethylamino)isoborneol (vide supra). Thus, alkylation of benzaldehyde with diethylzinc, catalyzed by a partially resolved catalyst N-P, gives 1-phenyl-1-propanol with an enantiomeric excess, which impressively exceeds the optical purity of the catalyst employed12. [Pg.168]

Polymer-supported amino alcohols and quaternary ammonium salts catalyze the enan-tioselective addition of dialkylzinc reagents to aldehydes (Table 31). When the quaternary ammonium salt F is used in hexane, it is in the solid state, and it catalyzes the alkylation of benzaldehyde with diethylzinc in good chemical yield and moderate enantioselectivity. On the other hand, when a mixture of dimethylformamide and hexane is used as solvent, the ammonium salt is soluble and no enantioselectivity is observed21. [Pg.174]

The polymer-bound catalysts A-C. (Table 31) are prepared by reaction of the corresponding amino alcohols with partially chloromethylated 1 -2% cross-linked polystyrene. In the case of A, the enantioselectivity of the addition of dialkylzincs to aldehydes is higher than with the corresponding monomeric ephedrine derivatives (vide supra). Interesting insights into the mechanism of the alkylation of aldehydes by dialkylzinc reagents can be obtained from the experi-... [Pg.174]

The optically active oxazolidinone derivative 3, readily obtainable from serine (see Appendix), is alkylated to give predominantly the cw-product98. The auxiliary is removed by acid hydrolysis to give the 2-amino alcohol. [Pg.827]

The enantioselective mechanism proposed in the literature stated that the structure I might be the most predominant structure and structure II might be a minor structure. Structure I resulted in (S)-amino alcohol when (S)-amine additive was used. On the other hand, structure II resulted in (R)-amino alcohol when (S)-amine additive was used. When the alkyl group of keto alcohol is methyl, conformation of reactant might he composed mainly of structure I, therefore resulting in highly optically active alaninol as indicated in Scheme 2. However, according to the experimental results, structure I can be a major conformation in this reaction. [Pg.315]

Certain alkylated ammonium, phosphonium, or sulfonium compounds are effective, in relatively low concentrations, in interfering with the growth of gas hydrate crystals [972] and therefore are useful in inhibiting plugging by gas hydrates in conduits containing low-boiling hydrocarbons and water. For example, tetrabutylammonium bromide will be active. Gas hydrate or ice formation is further inhibited in lines by adding amino acids or amino alcohols [523]. [Pg.181]

Novel chiral thiolated amino alcohols have been recently synthesised and then evaluated by Vilaivan el al. as a potential new class of ligands for Cu-catalysed nitroaldol reactions. Amino alcohol ligands bearing Ai-(2-alkyl-thio)benzyl substituents provided only modest enantioselectivities (22-46% ee) while those carrying Al-2-thienylmethyl substituents provided better enantioselectivities of up to 75% ee for the nitroaldol reaction between p-nitro-benzaldehyde and nitromethane. A range of aromatic aldehydes were acceptable substrates giving moderate to high enantioselectivities of up to 88% ee, as shown in Scheme 10.32. [Pg.319]

Asymmetric addition to ketimine in a reagent controlled manner has seldom been reported, even by 2008. When we investigated the potential for tbis asymmetric addition around 1992, there were no known examples. In 1990, Tomioka et al., reported the first asymmetric addition of alkyl lithium to N-p-methoxyphenyl aldo-imines in the presence ofa chiral (3-amino ether with 40-64% ee [8] (Scheme 1.11). In 1992, Katritzky reported the asymmetric addition of Et2Zn to in situ prepared N-acyl imine in the presence of a chiral (3-amino alcohol with 21-70% ee [15] (Scheme 1.12). In the same year, Soai et al., reported the asymmetric addition of dialkylzinc to diphenylphosphinoyl imines in the presence of chiral (3-amino alcohols with 85-87% ee [16] (Scheme 1.13). These three reports were, to the best of... [Pg.15]

Preparation of the quaternary anticholinergic agent benzilonium bromide (47) is begun by conjugate addition of ethylamine to methylacrylate, giving aminoester 42. Alkylation of 42 with methyl bromo-acetate leads to diester 43, which is transformed into pyrrolidone 44 by Dieckmann cyclization, followed by decarboxylation. Reduction of 44 by lithium aluminum hydride leads to the corresponding amino-alcohol (45). Transesterification of alcohol 45 with methyl benzilate leads to 46. Benzilonium bromide (47) is obtained by alkylation of ester 46 with ethyl bromide. 2... [Pg.72]

An efficient synthesis of A-alkylated-4-substituted isothiazolidine-dioxides (sultams) 251 has been developed utilizing epoxides 248 <06TL4245>. Addition of a secondary sulphonamide 247 to epoxide 248 in hot 1,4-dioxane affords the amino alcohol 249, which is... [Pg.264]


See other pages where Amino alcohols alkylation is mentioned: [Pg.192]    [Pg.192]    [Pg.81]    [Pg.71]    [Pg.116]    [Pg.107]    [Pg.222]    [Pg.161]    [Pg.129]    [Pg.63]    [Pg.99]    [Pg.164]    [Pg.164]    [Pg.172]    [Pg.175]    [Pg.706]    [Pg.215]    [Pg.8]    [Pg.108]    [Pg.149]    [Pg.327]    [Pg.385]    [Pg.63]    [Pg.258]    [Pg.364]    [Pg.68]    [Pg.167]    [Pg.45]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



5-Alkyl-2-amino

Alcohols alkylated

Alcohols alkylation

Alcohols amino alcohol

Alkyl alcohols

Amino alcohols

Amino alkylation

© 2024 chempedia.info