Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines solvent extraction

For direct precipitation of vanadium from the salt-roast leach Hquor, acidulation to ca pH 1 without the addition of ammonia salts yields an impure vanadic acid when ammonium salts are added, ammonium polyvanadate precipitates. The impure vanadic acid ordinarily is redissolved in sodium carbonate solution, and ammonium metavanadate precipitates upon addition of ammonium salts. Fusion of the directly precipitated ammonium salts can yield high purity V20 for the chemical industry. Amine solvent extraction is sometimes used to recover 1—3 g/L of residual V20 from the directly precipitated tail Hquors. [Pg.392]

Typical nonsieve, polar adsorbents are siUca gel and activated alumina. Kquilihrium data have been pubUshed on many systems (11—16,46,47). The order of affinity for various chemical species is saturated hydrocarbons < aromatic hydrocarbons = halogenated hydrocarbons < ethers = esters = ketones < amines = alcohols < carboxylic acids. In general, the selectivities are parallel to those obtained by the use of selective polar solvents in hydrocarbon systems, even the magnitudes are similar. Consequendy, the commercial use of these adsorbents must compete with solvent-extraction techniques. [Pg.292]

The principle of solvent extraction in refining is as follows when a dilute aqueous metal solution is contacted with a suitable extractant, often an amine or oxime, dissolved in a water-immiscible organic solvent, the metal ion is complexed by the extractant and becomes preferentially soluble in the organic phase. The organic and aqueous phases are then separated. By adding another aqueous component, the metal ions can be stripped back into the aqueous phase and hence recovered. Upon the identification of suitable extractants, and using a multistage process, solvent extraction can be used to extract individual metals from a mixture. [Pg.168]

For solvent extraction of pentavalent vanadium as a decavanadate anion, the leach solution is acidified to ca pH 3 by addition of sulfuric acid. Vanadium is extracted in about four countercurrent mixer—settler stages by a 3—5 wt % solution of a tertiary alkyl amine in kerosene. The organic solvent is stripped by a soda-ash or ammonium hydroxide solution, and addition of ammoniacal salts to the rich vanadium strip Hquor yields ammonium metavanadate. A small part of the metavanadate is marketed in that form and some is decomposed at a carefully controlled low temperature to make air-dried or fine granular pentoxide, but most is converted to fused pentoxide by thermal decomposition at ca 450°C, melting at 900°C, then chilling and flaking. [Pg.392]

For vanadium solvent extraction, Hon powder can be added to reduce pentavalent vanadium to quadrivalent and trivalent Hon to divalent at a redox potential of —150 mV. The pH is adjusted to 2 by addition of NH, and an oxyvanadium cation is extracted in four countercurrent stages of mixer—settlers by a diesel oil solution of EHPA. Vanadium is stripped from the organic solvent with a 15 wt % sulfuric acid solution in four countercurrent stages. Addition of NH, steam, and sodium chlorate to the strip Hquor results in the precipitation of vanadium oxides, which are filtered, dried, fused, and flaked (22). Vanadium can also be extracted from oxidized uranium raffinate by solvent extraction with a tertiary amine, and ammonium metavanadate is produced from the soda-ash strip Hquor. Fused and flaked pentoxide is made from the ammonium metavanadate (23). [Pg.392]

It is not advisable to store large quantities of picrates for long periods, particularly when they are dry due to their potential EXPLOSIVE nature. The free base should be recovered as soon as possible. The picrate is suspended in an excess of 2N aqueous NaOH and warmed a little. Because of the limited solubility of sodium picrate, excess hot water must be added. Alternatively, because of the greater solubility of lithium picrate, aqueous 10% lithium hydroxide solution can be used. The solution is cooled, the amine is extracted with a suitable solvent such as diethyl ether or toluene, washed with 5N NaOH until the alkaline solution remains colourless, then with water, and the extract is dried with anhydrous sodium carbonate. The solvent is distilled off and the amine is fractionally distilled (under reduced pressure if necessary) or recrystallised. [Pg.57]

The pure malate (mol. wt. 255) is decomposed by warming with very slightly more (Note 5) than two equivalents of approximately 2 N sodium hydroxide. The amine is extracted, after cooling with three or four 25-cc. portions of pure benzene, the solution is dried thoroughly with powdered sodium hydroxide, and the pure amine, b.p., 184-185°, [app + 39.2° to +39.7° (without solvent), is obtained by distillation (Note 6). A small amount of the amine distils with the benzene. The yield is 35-40 g. (92-94 per cent of the theoretical amount based on the pure malate). [Pg.81]

As already noted (p. 1073), the platinum metals are all isolated from concentrates obtained as anode slimes or converter matte. In the classical process, after ruthenium and osmium have been removed, excess oxidants are removed by boiling, iridium is precipitated as (NH4)2lrCl6 and rhodium as [Rh(NH3)5Cl]Cl2. In alternative solvent extraction processes (p. 1147) [IrClg] " is extracted in organic amines leaving rhodium in the aqueous phase to be precipitated, again, as [Rh(NH3)5Cl]Cl2. In all cases ignition in H2... [Pg.1114]

The almost dry residue is cooled to 0°C and made strongly alkaline with a 50% potassium hydroxide solution. The amine is extracted into several portions of ether, dried over potassium hydroxide, the solvent removed, and the base fractioned. Reaction of the base with a half-molar quantity of sulfuric acid gives the sulfate. [Pg.1517]

Notes on the preparation of secondary alkylarylamines. The preparation of -propyl-, ijopropyl- and -butyl-anilines can be conveniently carried out by heating the alkyl bromide with an excess (2-5-4mols) of aniline for 6-12 hours. The tendency for the alkyl halide to yield the corresponding tertiary amine is thus repressed and the product consists almost entirely of the secondary amine and the excess of primary amine combined with the hydrogen bromide liberated in the reaction. The separation of the primary and secondary amines is easily accomplished by the addition of an excess of per cent, zinc chloride solution aniline and its homologues form sparingly soluble additive compounds of the type B ZnCl whereas the alkylanilines do not react with sine chloride in the presence of water. The excess of primary amine can be readily recovered by decomposing the zincichloride with sodium hydroxide solution followed by steam distillation or solvent extraction. The yield of secondary amine is about 70 per cent, of the theoretical. [Pg.571]

Plasticiser/oil in rubber is usually determined by solvent extraction (ISO 1407) and FTIR identification [57] TGA can usually provide good quantifications of plasticiser contents. Antidegradants in rubber compounds may be determined by HS-GC-MS for volatile species (e.g. BHT, IPPD), but usually solvent extraction is required, followed by GC-MS, HPLC, UV or DP-MS analysis. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out. The determination of antioxidants in rubbers by means of HPLC and TLC has been reviewed [58], The TLC technique for antidegradants in rubbers is described in ASTM D 3156 and ISO 4645.2 (1984). Direct probe EIMS was also used to analyse antioxidants (hindered phenols and aromatic amines) in rubber extracts [59]. ISO 11089 (1997) deals with the determination of /V-phenyl-/9-naphthylamine and poly-2,2,4-trimethyl-1,2-dihydroquinoline (TMDQ) as well as other generic types of antiozonants such as IV-alkyl-AL-phenyl-p-phenylenediamines (e.g. IPPD and 6PPD) and A-aryl-AL-aryl-p-phenylenediamines (e.g. DPPD), by means of HPLC. [Pg.35]

Table 2.3 as a completely worked out example using quantitative solvent extraction, ash content determination, TGA, FTIR, XRF, GC-MS, HS-GC-MS, PyFTIR, ICP, and s-NMR. Information on the cure and antidegradant systems was obtained (assigned species/possible origin), as follows cyclohexane thiol/CBS accelerator benzothiazole/MBT, MBTS or CBS accelerators N, A-dimethylformamide/TMTD accelerator phthalim-ide/Santoguard PVI and IV-phenylbenzene amine/possi-bly a diphenyl/acetone amine antioxidant. [Pg.36]

Here we shall confine ourselves to the solvents benzene and 1,2-dichloroethane (class 8). Considering benzene, many investigators have demonstrated since the 1930s the feasibility of titrations in this solvent using both potentiometric and spectrophotometric methods, paying much attention to acid-base indicator reactions under the influence of primary, secondary and tertiary amines. Association of carboxylic acids in benzene was studied at a later stage, mainly on the basis of colligative properties, IR spectroscopy and solvent extraction. ... [Pg.285]

Mooiman, M. B. Miller, J. D. The chemistry of gold solvent extraction from cyanide solution using modified amines. Hydrometallurgy 1986, 16, 245-261. [Pg.806]

Zhao, J. Wu, Z. C. Chen, J. C. Gold extraction from thiosulfate solutions using mixed amines. Solvent Extr. Ion Exch. 1998, 16, 1407-1420. [Pg.807]

AMEX [Amine extraction] A process for the solvent extraction of uranium from sulfuric acid solutions using an amine extractant ... [Pg.20]

Clanex A solvent extraction process for converting solutions of the nitrates of actinides and lanthanides into their corresponding chlorides. The extractant is a solution of an aliphatic amine in diethylbenzene. [Pg.65]

Tramex [Transuranic metal (or amine) extraction] A process for separating transuranic elements from fission products by solvent extraction from chloride solutions into a tertiary amine solution. Developed at Oak Ridge National Laboratory, TN, for processing irradiated plutonium. [Pg.273]

Among the most important indirect methods of analysis which employ redox reactions are the bromination procedures for the determination of aromatic amines, phenols, and other compounds which undergo stoichiometric bromine substitution or addition. Bromine may be liberated quantitatively by the acidification of a bromate-bromide solution mixed with the sample. The excess, unreacted bromine can then be determined by reaction with iodide ions to liberate iodine, followed by titration of the iodine with sodium thiosulphate. An interesting extension of the bromination method employs 8-hydroxyquinoline (oxine) to effect a separation of a metal by solvent extraction or precipitation. The metal-oxine complex can then be determined by bromine substitution. [Pg.205]

Separation of amines was realized in an ODS column (250 x 3 mm i.d. particle size 5 /tm) at 30°C. The flow rate was 0.3 ml/min and amines were detected at 280 nm. Solvents A and B for gradient elution were ACN and 3 mM phosphate buffer (pH = 7). The gradient started with 15 per cent A for 2 min then to 60 per cent A in 50 min. Chromatograms illustrating the separation of amines are shown in Fig. 3.72. It was established that the recoveries of both SFE and MAE were higher than those of traditional solvent extraction, therefore, their application for the analysis of carcinogenic aromatic amines in leather is highly advocated [140],... [Pg.453]

The object of equilibration is to provide a solvent that will effectively extract the required species, either because of the form of the active constituent of the solvent or by maintaining the necessary extraction pH. As an example of the former condition, consider the extraction of uranium using a tertiary aliphatic amine as extractant. Extraction of metal species by such amines is considered to occur by liquid ion exchange (see Chapters 3 and 4). For a tertiary amine to act in this manner, it must be first converted to an amine salt ... [Pg.283]

Aliphatic amines used in solvent extraction operations have low solubility in acidic aqueous solutions, generally below about 10 ppm. Solubility is... [Pg.309]


See other pages where Amines solvent extraction is mentioned: [Pg.392]    [Pg.806]    [Pg.392]    [Pg.340]    [Pg.51]    [Pg.392]    [Pg.806]    [Pg.392]    [Pg.340]    [Pg.51]    [Pg.571]    [Pg.650]    [Pg.217]    [Pg.517]    [Pg.176]    [Pg.127]    [Pg.406]    [Pg.223]    [Pg.24]    [Pg.44]    [Pg.57]    [Pg.148]    [Pg.204]    [Pg.121]    [Pg.224]    [Pg.419]    [Pg.650]    [Pg.550]    [Pg.727]    [Pg.98]    [Pg.148]    [Pg.169]   
See also in sourсe #XX -- [ Pg.802 , Pg.804 , Pg.805 , Pg.806 ]

See also in sourсe #XX -- [ Pg.802 , Pg.804 , Pg.805 , Pg.806 ]

See also in sourсe #XX -- [ Pg.6 , Pg.802 , Pg.804 , Pg.805 , Pg.806 ]




SEARCH



Amine extractants

Amine extraction

Amines cobalt complexes, solvent extraction

Amines iron complexes, solvent extraction

Amines molybdenum complexes, solvent extraction

Amines solvent extraction, platinum

Amines solvent extraction, platinum group metals

Solvent amine

Solvent extraction amine salts

© 2024 chempedia.info