Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum varieties

As revealed by the differential heat curve (Figure 2, curve 2), treatment with HMDS affects the acidity of H-[Si,Ga]MAG in the same way as that of the aluminum variety, i.e. it results in the blockage of the Bronsted-acid sites and of most of the hydroxyls associated with lattice defects. [Pg.62]

Although its electrical conductivity is only about 60% that of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but it can be alloyed with small amounts of copper, magnesium, silicon, manganese, and other elements to impart a variety of useful properties. [Pg.32]

Tantalum is a gray, heavy, and very hard metal. When pure, it is ductile and can be drawn into fine wire, which is used as a filament for evaporating metals such as aluminum. Tantalum is almost completely immune to chemical attack at temperatures below ISOoC, and is attacked only by hydrofluoric acid, acidic solutions containing the fluoride ion, and free sulfur trioxide. Alkalis attack it only slowly. At high temperatures, tantalum becomes much more reactive. The element has a melting point exceeded only by tungsten and rhenium. Tantalum is used to make a variety... [Pg.132]

Reduction to alcohols (Section 15 2) Aide hydes are reduced to primary alcohols and ketones are reduced to secondary alcohols by a variety of reducing agents Catalytic hydrogenation over a metal catalyst and reduction with sodium borohydride or lithium aluminum hydride are general methods... [Pg.713]

Alkyl azides prepared by nucleophilic substitution of alkyl halides by sodium azide as shown m the first entry of Table 22 3 are reduced to alkylammes by a variety of reagents including lithium aluminum hydride... [Pg.931]

Tetrahydrofurfuryl alcohol reacts with ammonia to give a variety of nitrogen containing compounds depending on the conditions employed. Over a barium hydroxide-promoted skeletal nickel—aluminum catalyst, 2-tetrahydrofurfur5iarnine [4795-29-3] is produced (113—115). With paHadium on alumina catalyst in the vapor phase (250—300°C), pyridine [110-86-1] is the principal product (116—117) pyridine also is formed using Zn and Cr based catalysts (118,119). At low pressure and 200°C over a reduced nickel catalyst, piperidine is obtained in good yield (120,121). [Pg.82]

Most of the polymer s characteristics stem from its molecular stmcture, which like POE, promotes solubiUty in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubiUty and hot meltable characteristics promote adhesion in a number of appHcations. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and poly(ethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

Fluorine can be handled using a variety of materials (100—103). Table 4 shows the corrosion rates of some of these as a function of temperature. System cleanliness and passivation ate critical to success. Materials such as nickel, Monel, aluminum, magnesium, copper, brass, stainless steel, and carbon steel ate commonly used. Mote information is available in the Hterature (20,104). [Pg.129]

Applications. The principal use for rigid polyurethane foams is for iasulation ia various forms utilized by a variety of iadustries. Lamiaates for resideatial sheatiag (1.2 to 2.5 cm thick with aluminum skins) and roofing board (2.5 to 10.0 cm thick with roofing paper skins) are the leading products with about 45 metric tons of Hquid spray systems also ia use. Metal doors iasulated by a pour-ia-place process coastitute another substantial use. [Pg.419]

Chiral diene—iron tricarbonyl complexes were acylated using aluminum chloride to give acylated diene—iron complexes with high enantiomeric purity (>96% ee). For example, /ra/ j -piperjdene—iron tricarbonyl reacted with acyl haUdes under Friedel-Crafts conditions to give l-acyl-l,3-pentadiene—iron tricarbonyl complex without any racemization. These complexes can be converted to a variety of enantiomericaHy pure tertiary alcohols (180). [Pg.563]

In addition to its presence in fmits, S(—)-malic acid has been found in cultures of a variety of microorganisms including the aspergiUi, yeasts, species of Sekrotinia, and Penicillium brevicompactum. Yields of levorotatory malic acid as high as 74% of theoretical have been reported. Iron, manganese, chromium, or aluminum ions reportedly enhance malic acid production. S(—)-Mahc acid is involved in two respiratory metaboHc cycles the Krebs tricarboxylic acid... [Pg.522]

Over the years, a variety of fuel types were employed. Originally, natural uranium slugs canned in aluminum were the source of plutonium, while lithium—aluminum alloy target rods provided control and a source of tritium. Later, to permit increased production of tritium, reactivity was recovered by the use of enriched uranium fuel, ranging from 5—93%. [Pg.219]

A number of pool, also called swimming pool, reactors have been built at educational institutions and research laboratories. The core in these reactors is located at the bottom of a large pool of water, 6 m deep, suspended from a bridge. The water serves as moderator, coolant, and shield. An example is the Lord nuclear reactor at the University of Michigan, started in 1957. The core is composed of fuel elements, each having 18 aluminum-clad plates of 20% enriched uranium. It operates at 2 MW, giving a thermal flux of 3 x 10 (cm -s). The reactor operates almost continuously, using a variety of beam tubes, for research purposes. [Pg.224]

Liquids. Approximately 170,000 railroad tank cars are used in the United States. The interior surfaces of these cars are tailored to carry a wide variety of products and are constmcted of steel which is either unlined or lined with materials to enhance the chemical compatibiUty with a specific product these lining materials include synthetic mbber, phenoHc or modified epoxy resins, or corrosion-resistant materials such as aluminum, nickel-bearing steel, or stainless steel. [Pg.511]

Diacyl peroxides have been reduced with a variety of reduciag agents, eg, lithium aluminum hydride, sulfides, phosphites, phosphines, and haUde ions (187). Hahdes yield carboxyUc acid salts (RO) gives acid anhydrides. With iodide ion and certain trivalent phosphoms compounds, the reductions are sufftcientiy quantitative for analytical purposes. [Pg.124]

PhenoHcs that are not heat-reactive may be incorporated into both air-dried and baked oleoresinous coatings. AppHcations vary widely and include clear and pigmented exterior varnishes, aluminum-maintenance paints, 2inc-rich primers, can coatings, insulation varnishes, and concrete paints. As modifiers in a great variety of appHcations, they enhance the performance of oleoresinous and alkyd coatings. [Pg.303]

Anhydrous aluminum chloride forms a variety of complexes with phosgene, eg, 3COC12 at low temperatures, 3COC12 at 30°C, and... [Pg.312]


See other pages where Aluminum varieties is mentioned: [Pg.55]    [Pg.62]    [Pg.908]    [Pg.55]    [Pg.62]    [Pg.908]    [Pg.212]    [Pg.196]    [Pg.224]    [Pg.347]    [Pg.441]    [Pg.37]    [Pg.145]    [Pg.231]    [Pg.311]    [Pg.418]    [Pg.508]    [Pg.551]    [Pg.561]    [Pg.199]    [Pg.405]    [Pg.118]    [Pg.245]    [Pg.247]    [Pg.250]    [Pg.322]    [Pg.328]    [Pg.331]    [Pg.192]    [Pg.345]    [Pg.10]    [Pg.15]    [Pg.46]    [Pg.278]    [Pg.412]    [Pg.437]    [Pg.108]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Variety

© 2024 chempedia.info