Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum acetate bromide

Alkyl acetone Alkyl alcohol Alkyl benzene Alkyl chloride Alkyl sulfide Aluminum acetate Aluminum bromide Aluminum chlorate Aluminum chloride Aluminum ethylate Aluminum fluoride Aluminum fluorosilicate Aluminum formate Aluminum hydroxide Aluminum nitrate Aluminum oxalate Aluminum phosphate Aluminum sulfate Alum... [Pg.549]

Benzopinacol has been prepared by the action of phenylmag-nesium bromide on benzil 1 or methyl benzilate. Usually it has been obtained by reduction of benzophenone, the reducing agents being zinc and sulfuric acid or acetic acid, aluminum amalgam, and magnesium and magnesium iodide. The present... [Pg.9]

Alternatively, 25.0 g of either 3j3,5a-dihydroxy-17a-methyl-17j3-carbomethoxyandrostan-6-one (Ilia) or 25.0 g of its 3)3-acetate (Hlb), are dissolved in dry tetrahydrofuran (1,250 ml, freshly distilled over lithium aluminum hydride) and dry benzene (2,000 ml) is added. Methyl magnesium bromide in ether solution (3 M, 750 ml) is added to the stirred solution and the resulting mixture is stirred at room temperature for 16 hours. An additional quantity of methyl magnesium bromide solution in ether (2M, 375 ml) is added, and 1,250 ml of the solvent mixture are distilled off. The resulting mixture is refluxed for 5 hours and worked up as described above, yielding compound (V) as a colorless oil. [Pg.913]

Mediated by Tin. In 1983, Nokami et al. observed an acceleration of the reaction rate during the allylation of carbonyl compounds with diallyltin dibromide in ether through the addition of water to the reaction mixture.74 In one case, by the use of a 1 1 mixture of ether/water as solvent, benzaldehyde was allylated in 75% yield in 1.5 h, while the same reaction gave only less than 50% yield in a variety of other organic solvents such as ether, benzene, or ethyl acetate, even after a reaction time of 10 h. The reaction was equally successful with a combination of allyl bromide, tin metal, and a catalytic amount of hydrobromic acid. In the latter case, the addition of metallic aluminum powder or foil to the reaction mixture dramatically improved the yield of the product. The use of allyl chloride for such a reaction,... [Pg.229]

Later, Torii et al. found that the tin-aluminum-mediated allylation can be carried out with the less expensive allyl chloride, instead of allyl bromide, when a mixture of alcohol-water-acetic acid was used as the solvent.77 When combined with stoichiometric amounts of aluminum powder, both stoichiometric and catalytic amounts of tin are effective. As reported by Wu et al., higher temperatures can be used instead of aluminum powder.78 Under such a reaction condition, allyl quinones were obtained from 1,4-quinones, followed by oxidation with ferric chloride. Allylation reactions in water/organic solvent mixtures were also carried out electrochemically, with the advantage that the allyltin reagent could be recycled.79... [Pg.230]

Preparation of the quaternary anticholinergic agent benzilonium bromide (47) is begun by conjugate addition of ethylamine to methylacrylate, giving aminoester 42. Alkylation of 42 with methyl bromo-acetate leads to diester 43, which is transformed into pyrrolidone 44 by Dieckmann cyclization, followed by decarboxylation. Reduction of 44 by lithium aluminum hydride leads to the corresponding amino-alcohol (45). Transesterification of alcohol 45 with methyl benzilate leads to 46. Benzilonium bromide (47) is obtained by alkylation of ester 46 with ethyl bromide. 2... [Pg.72]

Corynantheidol (255) has been prepared by Hanaoka et al. (155), who started from piperideine derivative 268 and tryptophyl bromide (197). The key cyclization step, resulting in indolo[2,3-a]quinolizine 270 as the major product besides 271, was carried out by mercuric acetate oxidation in the presence of the disodium salt of ethylenediaminetetraacetic acid (EDTA), followed by sodium borohydride reduction. Finally, lithium aluminum hydride reduction of 270 provided ( )-corynantheidol in good yield (155). [Pg.190]

N-Methylethylamine has been prepared by heating ethyl-amine with methyl iodide in alcohol at 100° 3 by the hydrolysis of N-methyl-N-ethylarenesulfonamides,4-5 -nitroso-N-methyl-N-ethylaniline,6 or methylethylbenzhydrylidene ammonium iodide 7 by catalytic hydrogenation of ethyl isocyanate or ethyl isocyanide 8 and by the reduction of ethyl isocyanate by lithium aluminum hydride,9 of N-methylacetisoaldoxime by sodium amalgam and acetic acid,10 or of a nitromethane/ethylmagnesium bromide adduct by zinc and hydrochloric acid.11... [Pg.109]

Lithium aluminum hydride reduced )J-azidoethylbenzene to j8-aminoethyl-benzene in 89% yield [600], The azido group was also reduced with aluminum amalgam (yields 71-86%) [149], with titanium trichloride (yields 54-83%) [601], with vanadous chloride (yields 70-95%) [217] Procedure 40, p. 215), with hydrogen sulfide (yield 90%) [247], with sodium hydrosulfite (yield 90%) [259], with hydrogen bromide in acetic acid (yields 84-97%) [232], and with 1,3-propanedithiol (yields 84-100%) [602]. Unsaturated azides were reduced to unsaturated amines with aluminum amalgam [149] and with 1,3-propane-dithiol [602]. [Pg.76]

Our initial work on the TEMPO / Mg(N03)2 / NBS system was inspired by the work reported by Yamaguchi and Mizuno (20) on the aerobic oxidation of the alcohols over aluminum supported ruthenium catalyst and by our own work on a highly efficient TEMP0-[Fe(N03)2/ bipyridine] / KBr system, reported earlier (22). On the basis of these two systems, we reasoned that a supported ruthenium catalyst combined with either TEMPO alone or promoted by some less elaborate nitrate and bromide source would produce a more powerful and partially recyclable catalyst composition. The initial screening was done using hexan-l-ol as a model substrate with MeO-TEMPO as a catalyst (T.lmol %) and 5%Ru/C as a co-catalyst (0.3 mol% Ru) in acetic acid solvent. As shown in Table 1, the binary composition under the standard test conditions did not show any activity (entry 1). When either N-bromosuccinimide (NBS) or Mg(N03)2 (MNT) was added, a moderate increase in the rate of oxidation was seen especially with the addition of MNT (entries 2 and 3). [Pg.121]

Synonym Neatsfoot Oil Necatorina Nechexane Neutral Ahhonium Pluoride Neutral Anhydrous Calcium Hypochlorite Neutral Lead Acetate Neutral Nicotine Sulfate Neutral Potassium Chromate Neutral Sodium Chromatetanhydrous Neutral Verdigris Nickel Acetate Nickel Acetate Tetrahyorate Nickel Ammonium Sulfate Nickel Ammonium Sulfate Hexahydrate Nickel Bromide Nickel Bromide Trihydrate Nickel Carbonyl Nickel Chloride Nickel Chloride Nickel Cyanide Nickel Iiu Fluoborate Nickel Fluoroborate Solution Nickel Fluoroborate Nickel Formate Nickel Formate Dihyorate Nickel Nitrate Nickel Nitrate Hexahydrate Nickel Sulfate Nickel Tetracarbokyl Nickelous Acetate Nickelous Sulfate Nicotine Nicotine Sulfate Nifos Nitralin Nitram O-Nitraniline P-Nitraniline Nitric Acid Nitric Acid, Aluminum Salt Nitric Acid, Iron (111) Salt Compound Name Oil Neatsfoot Carbon Tetrachloride Neohexane Ammonium Fluoride Calcium Hypochlorite Lead Acetate Nicotine Sulfate Potassium Chromate Sodium Chromate Copper Acetate Nickel Acetate Nickel Acetate Nickel Ammonium Sulfate Nickel Ammonium Sulfate Nickel Bromide Nickel Bromide Nickel Carbonyl Nickel Chloride Nickel Chloride Nickel Cyanide Nickel Fluoroborate Nickel Fluoroborate Nickel Fluoroborate Nickel Formate Nickel Formate Nickel Nitrate Nickel Nitrate Nickel Sulfate Nickel Carbonyl Nickel Acetate Nickel Sulfate Nicotine Nicotine Sulfate Tetraethyl Pyrophosphate Nitralin Ammonium Nitrate 2-Nitroaniline 4-Nitroaniline Nitric Acid Aluminum Nitrate Ferric Nitrate... [Pg.69]

The positional reactivity of dibenzofuran in electrophilic substitution reactions depends on the electrophile. Reaction occurs mostly at the 2- and 3-positions but the ratio of the two products varies (91JOC4671). The reaction of cyanogen bromide catalyzed by aluminum chloride gives an 80% yield of the 2-substituted product together with 15% of the 3-cyano-derivative (92ACS312). Oxidative acetoxylation of dibenzofuran occurs predominantly at the 3-position ( 60%) together with attack at the 1-position ( 30%) (92ACS802). In this latter reaction, the attack by acetate is on the dibenzofuranium radical cation. [Pg.344]

As stated above, one of the routes to thienothiophene 2 is cyclization of (3-thienylthio)acetic acid in the presence of concentrated sulfuric acid followed by action of the 2,3-dihydrothieno[3,2-i]thiophen-3-one (22, R = H) formed with lithium aluminum hydride.26,28 Attempts by the present authors41,33 as well as those of Gronowitz and Moses47 to obtain thienothiophene 1 by cyclizing (2-thienylthio)acetic acid or its chloride by various catalysts (stannic chloride, aluminum chloride or bromide, polyphosphoric acid or anhydrous HF) were unsuccessful. Synthesis of 2-ethyl-3-hydroxythieno[2,3-A]thiophene33 by procedures commonly used for the preparation of 3-hydroxybenzo[A]thiophene72-74 also failed. [Pg.144]

For the preparation of MIPM, the above phenol, 2,5-dimethoxyphenol was isopropylated with isopropyl bromide in methanolic KOH giving 2,5-dimethoxy-l-(i)-propoxybenzene as an oil. This formed the benzaldehyde with the standard Vilsmeier conditions, which melted at 77-78 °C from hexane and which gave a yellow malononitrile derivative melting at 171.5-173 °C. The nitrostyrene, from nitroethane in acetic acid was orange colored and melted at 100-101 °C from either methanol or hexane. This was reduced with lithium aluminum hydride in ether to give 2,5-dimethoxy-4-(i)-propoxyamphetamine hydrochloride (MIPM). The properties of the isolated salt were strange (soluble in acetone but not in water) and the microanalysis was low in the carbon value. The molecular structure had a pleasant appeal to it, with a complete reflection symmetry shown by the atoms of the amphetamine side chain and the isopropoxy side chain. But the nature of the actual product in hand had no appeal at all, and no assay was ever started. [Pg.179]

For the preparation of MBM, the starting phenol was alkylated to 2-(n)-butoxy-1,4-dimethoxybenzene in methanolic KOH with n-butyl bromide. The benzaldehyde melted at 79.5-81 °C from methanol, and formed a malononitrile derivative that had a melting point of 134.5-135 C. The nitrostyrene from the aldehyde and nitroethane in acetic acid crystallized from methanol with a mp of 71 -72 °C. Lithium aluminum hydride reduction in ether gave the ether-insoluble chloroform-soluble product 4-(n)-butoxy-2,5-dimethoxyamphetamine hydro-... [Pg.179]


See other pages where Aluminum acetate bromide is mentioned: [Pg.526]    [Pg.4828]    [Pg.53]    [Pg.342]    [Pg.436]    [Pg.174]    [Pg.429]    [Pg.431]    [Pg.2280]    [Pg.264]    [Pg.88]    [Pg.1477]    [Pg.80]    [Pg.125]    [Pg.153]    [Pg.101]    [Pg.374]    [Pg.143]    [Pg.293]    [Pg.144]    [Pg.57]    [Pg.100]    [Pg.109]    [Pg.112]    [Pg.122]    [Pg.135]    [Pg.454]    [Pg.326]    [Pg.100]    [Pg.342]    [Pg.41]    [Pg.17]    [Pg.151]    [Pg.401]   
See also in sourсe #XX -- [ Pg.813 ]




SEARCH



Aluminum acetate

Aluminum bromide

© 2024 chempedia.info