Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation, of ethylbenzene

In the alkylation of ethylbenzene with ethylene, with conventional acid catalysts under usual conditions,. veobutyl benzene is a byproduct. rec-Butylbenzene was detected when the reaction was carried out over catalysts such as supported phosphoric acid,189 ferric phosphate,189 or AICI3—NiO—Si02-190 When Nafion-H or AICI3 are used, no such byproduct is detected, probably due to fast dealkylation of sec-butylbenzene under the more acidic conditions. [Pg.558]

Like aluminumtrialkyls, alkylaluminumhalogenides are quite widely used as components of catalytic systems during polymerisation. To polymerise unsaturated compounds, it is preferable to use alkylaluminumchlo-rides with titanium tetrachloride. Alkylaluminumhalogenides, and ethy-laluminumbromides in particular, are also efficient catalysts for the alkylation of ethylbenzene and cyclohexene. Besides, alkylaluminumhalogenides, like aluminumtrialkyls, are used to spray metal aluminum on various surfaces and to make electroplate aluminum coatings. [Pg.484]

Transition-state selectivity is sometimes difficult to distinguish from product shape selectivity. A recent study by Kim et al. (8) shows that the high para-selectivity for the alkylation of ethylbenzene with ethanol in metallosilicates (MeZSM-5) is not due to product selectivity alone. They conclude that the primary product of the alkylation on ZSM-5 type metallosilicates is p-diethylbenzene which isomerizes further inside the cavity of ZSM-5 to other isomers. As the acid sites of zeolites becomes weaker (achieved by substituting different metals into the framework of the zeolite), the isomerization of the primarily produced p-isomer is suppressed. Although Kim et al. attribute this suppression of the isomerization activity to restricted transition-state selectivity, it is more likely that this suppression is due to the decrease in acid strength. [Pg.212]

Ercan et al. studied the alkylation of ethylbenzene, EB, with light olefins (ethylene and propylene) over a commercial zeolite Y catalyst in a fixed-bed reactor with recycle [C. Ercan, F. M. Dautzenberg, C. Y. Yeh, and H. E. Earner, Ind. Eng. Chem. Res., 37 (1998) 1724]. The solid-catalyzed liquid-phase reaction was carried out in excess ethylbenzene at 25 bar and 190°C. Assume... [Pg.235]

Table 4.5 Alkylation of ethylbenzene (EB) with ethylene large-crystal Mg-P-ZSM-5 catalyst... Table 4.5 Alkylation of ethylbenzene (EB) with ethylene large-crystal Mg-P-ZSM-5 catalyst...
Predominant or exclusive formation ofmeta-substituted aromatics occurs by carbanion attack on (toluene)- or (anisoIe)chromium tricarbonyl (Semmelhack and Clark, 1977). The direct alkylation of (ethylbenzene)chromium tricarbonyl has been reported by Card rmd Trahanovsky (1973). [Pg.81]

For example, ia the iadustriaHy important alkylation of benzene with ethylene to ethylbenzene, polyethylbenzenes are also produced. The overall formation of polysubstituted products is minimized by recycling the higher ethylation products for the ethylation of fresh benzene (14). By adding the calculated equiUbrium amount of polyethylbenzene to the benzene feed, a high conversion of ethylene to monoethylbenzene can be achieved (15) (see also... [Pg.552]

Ethjlben ne Synthesis. The synthesis of ethylbenzene for styrene production is another process in which ZSM-5 catalysts are employed. Although some ethylbenzene is obtained direcdy from petroleum, about 90% is synthetic. In earlier processes, benzene was alkylated with high purity ethylene in liquid-phase slurry reactors with promoted AlCl catalysts or the vapor-phase reaction of benzene with a dilute ethylene-containing feedstock with a BF catalyst supported on alumina. Both of these catalysts are corrosive and their handling presents problems. [Pg.459]

Most of the industrially important alkyl aromatics used for petrochemical intermediates are produced by alkylating benzene [71-43-2] with monoolefins. The most important monoolefins for the production of ethylbenzene, cumene, and detergent alkylate are ethylene, propylene, and olefins with 10—18 carbons, respectively. This section focuses primarily on these alkylation technologies. [Pg.47]

Catalysts. Nearly aU. of the industrially significant aromatic alkylation processes of the past have been carried out in the Hquid phase with unsupported acid catalysts. For example, AlCl HF have been used commercially for at least one of the benzene alkylation processes to produce ethylbenzene (104), cumene (105), and detergent alkylates (80). Exceptions to this historical trend have been the use of a supported boron trifluoride for the production of ethylbenzene and of a soHd phosphoric acid (SPA) catalyst for the production of cumene (59,106). [Pg.53]

Styrene is manufactured from ethylbenzene. Ethylbenzene [100-41-4] is produced by alkylation of benzene with ethylene, except for a very small fraction that is recovered from mixed Cg aromatics by superfractionation. Ethylbenzene and styrene units are almost always installed together with matching capacities because nearly all of the ethylbenzene produced commercially is converted to styrene. Alkylation is exothermic and dehydrogenation is endothermic. In a typical ethylbenzene—styrene complex, energy economy is realized by advantageously integrating the energy flows of the two units. A plant intended to produce ethylbenzene exclusively or mostly for the merchant market is also not considered viable because the merchant market is small and sporadic. [Pg.477]

Styrene. Commercial manufacture of this commodity monomer depends on ethylbenzene, which is converted by several means to a low purity styrene, subsequendy distilled to the pure form. A small percentage of styrene is made from the oxidative process, whereby ethylbenzene is oxidized to a hydroperoxide or alcohol and then dehydrated to styrene. A popular commercial route has been the alkylation of benzene to ethylbenzene, with ethylene, after which the cmde ethylbenzene is distilled to give high purity ethylbenzene. The ethylbenzene is direcdy dehydrogenated to styrene monomer in the vapor phase with steam and appropriate catalysts. Most styrene is manufactured by variations of this process. A variety of catalyst systems are used, based on ferric oxide with other components, including potassium salts, which improve the catalytic activity (10). [Pg.494]

All lation. An exceUent example of alkylation is the Mobil-Badger process, which uses ZSM-5-type zeoHte to produce ethylbenzene by alkylation of benzene with ethylene (12,40) ... [Pg.197]

The generation of caibocations from these sources is well documented (see Section 5.4). The reaction of aromatics with alkenes in the presence of Lewis acid catalysts is the basis for the industrial production of many alkylated aromatic compounds. Styrene, for example, is prepared by dehydrogenation of ethylbenzene made from benzene and ethylene. [Pg.583]

Ethylbenzene can also be produced by catalytic alkylation of benzene with ethylene. Benzene is alkylated with ethylene in a fixed bed alkylator. An excess of benzene is used to suppress the formation of di- and triethyl- benzenes. The excess benzene is removed from the alkylate by fractionation and recycled to the alkylator. The ethylbenzene is separated from the polyalkylated benzenes which are in turn fed to a separate reactor. Here benzene is added to convert the polyalkylated benzenes to monoethylbenzene by transalkylation. [Pg.112]

Details of two related patents for the alkylation of aromatic compounds with chloroaluminate(III) ionic or chlorogallate(III) ionic liquid catalysts have become available. The first, by Seddon and co-workers [81], describes the reaction between ethene and benzene to give ethylbenzene (Scheme 5.1-51). This is carried out in an... [Pg.198]

Ethylbenzene (C6H5CH2CH3) is one of the Cg aromatic constituents in reformates and pyrolysis gasolines. It can be obtained by intensive fractionation of the aromatic extract, but only a small quantity of the demanded ethylbenzene is produced by this route. Most ethylbenzene is obtained by the alkylation of benzene with ethylene. Chapter 10 discusses conditions for producing ethylbenzene with benzene chemicals. The U.S. production of ethylbenzene was approximately 12.7 billion pounds in 1997. Essentially, all of it was directed for the production of styrene. [Pg.42]

The deprotonation of benzylic carbon facilitated by the Cr(CO)3 has also been studied [18] by other authors after the pioneering demonstration of Trahanowsky and Card using this unit. Thus, it has been applied to the alkylation of phenylacetate, acetophenone, and ethylbenzene [19]. Similarly, bis(mesitylene)-... [Pg.65]

The reaction of ethylbenzene with 5 mol of 3 under the same reaction conditions for the alkylation of toluene with 3, gave pentakis 2-(methyldichlorosilyl)ethyl -(25%). tetrakisl2-(methyldichlorosilyl)ethyl]-(9%). tris[2-(methyldichlorosilyl)-... [Pg.161]

There are several other examples of ZSM-5 being used commercially to reduce waste and give high product selectivity. One of these is the alkylation of benzene with ethene to produce ethylbenzene selectively. The pore size of ZSM-5 successfully minimizes dialkylation reactions whilst the ability to regenerate the catalyst avoids waste issues associated with older catalysts such as aluminium chloride. [Pg.96]

Purification of industrial oils, kerosene/jet fuel, lubricating oils Mono- dicumyldiphenylamine Mono- dioctyldiphenylamine Dimer fatty acids Purification of xylenes Improvement of bromine number of recycle cumene in phenol plants Improvement of bromine number of recycle ethylbenzene in styrene plants based on liquid pha.se oxidation Alkylation of xylenes with diisobutylenes to mono-/ rr-butyI derivatives Phenyl xylyl ethane... [Pg.134]

Another recent patent (22) and related patent application (31) cover incorporation and use of many active metals into Si-TUD-1. Some active materials were incorporated simultaneously (e.g., NiW, NiMo, and Ga/Zn/Sn). The various catalysts have been used for many organic reactions [TUD-1 variants are shown in brackets] Alkylation of naphthalene with 1-hexadecene [Al-Si] Friedel-Crafts benzylation of benzene [Fe-Si, Ga-Si, Sn-Si and Ti-Si, see apphcation 2 above] oligomerization of 1-decene [Al-Si] selective oxidation of ethylbenzene to acetophenone [Cr-Si, Mo-Si] and selective oxidation of cyclohexanol to cyclohexanone [Mo-Si], A dehydrogenation process (32) has been described using an immobilized pincer catalyst on a TUD-1 substrate. Previously these catalysts were homogeneous, which often caused problems in separation and recycle. Several other reactions were described, including acylation, hydrogenation, and ammoxidation. [Pg.377]

Among the wide variety of organic reactions in which zeolites have been employed as catalysts, may be emphasized the transformations of aromatic hydrocarbons of importance in petrochemistry, and in the synthesis of intermediates for pharmaceutical or fragrance products.5 In particular, Friede 1-Crafts acylation and alkylation over zeolites have been widely used for the synthesis of fine chemicals.6 Insights into the mechanism of aromatic acylation over zeolites have been disclosed.7 The production of ethylbenzene from benzene and ethylene, catalyzed by HZSM-5 zeolite and developed by the Mobil-Badger Company, was the first commercialized industrial process for aromatic alkylation over zeolites.8 Other typical examples of zeolite-mediated Friedel-Crafts reactions are the regioselective formation of p-xylene by alkylation of toluene with methanol over HZSM-5,9 or the regioselective p-acylation of toluene with acetic anhydride over HBEA zeolites.10 In both transformations, the p-isomers are obtained in nearly quantitative yield. [Pg.32]

As the reaction temperature increases, the equilibrium constant diminishes, since complex formation is accompanied by heat liberation. Sterically hindered phenols form loose complexes because of the impeding effect of voluminous alkyl substituents in the ortho-position. Hydrogen bonding reduces the activity of phenols, which was first observed in the studies of the effects of cyclohexanol and butanol on the inhibitory activity of a-naphthol in cyclohexane [9]. This phenomenon was investigated in detail with reference to the oxidation of methylethylketone [10]. The k7 values for some inhibitors of the oxidation of ethylbenzene and methylethylketone are given below (333 K) [10,46] ... [Pg.519]

Recently an analogous mechanism for cyclic chain termination has been established for quinones [47], Quinones, which can act as acceptors of alkyl radicals, do not practically retard the oxidation of hydrocarbons at concentrations of up to 5 x 10 3 mol L 1, because the alkyl radicals react very rapidly with dioxygen. However, the ternary system, /V-phenylquinonc imine (Q) + H202 + acid (HA), efficiently retards the initiated oxidation of methyl oleate and ethylbenzene [47]. This is indicated by the following results obtained for the oxidation of ethylbenzene (343 K, p02 = 98 kPa, Vi = 5.21 x 10-7 mol L 1 s 1). [Pg.585]

Alkar [Alkylation of aromatics] Also (incorrectly) spelled Alcar. A catalytic process for making ethylbenzene by reacting ethylene with benzene. The ethylene stream can be of ary concentration down to 3 percent. The catalyst is boron trifluoride on alumina. Introduced by UOP in 1958 but no longer licensed by them. Replaced by the Ethylbenzene process. [Pg.17]

The most fundamental reaction is the alkylation of benzene with ethene.38,38a-38c Arylation of inactivated alkenes with inactivated arenes proceeds with the aid of a binuclear Ir(m) catalyst, [Ir(/x-acac-0,0,C3)(acac-0,0)(acac-C3)]2, to afford anti-Markovnikov hydroarylation products (Equation (33)). The iridium-catalyzed reaction of benzene with ethene at 180 °G for 3 h gives ethylbenzene (TN = 455, TOF = 0.0421 s 1). The reaction of benzene with propene leads to the formation of /z-propylbenzene and isopropylbenzene in 61% and 39% selectivities (TN = 13, TOF = 0.0110s-1). The catalytic reaction of the dinuclear Ir complex is shown to proceed via the formation of a mononuclear bis-acac-0,0 phenyl-Ir(m) species.388 The interesting aspect is the lack of /3-hydride elimination from the aryliridium intermediates giving the olefinic products. The reaction of substituted arenes with olefins provides a mixture of regioisomers. For example, the reaction of toluene with ethene affords m- and />-isomers in 63% and 37% selectivity, respectively. [Pg.220]

Karge and Ladebeck (90) studied the alkylation of benzene with olefins over aluminum-deficient, beryllium exchanged mordenite and found a considerable extension of the lifetime of the catalyst, as compared to H-mordenite. The authors were able to carry out quite efficiently the alkylation reaction as well as the transalkylation of ethylbenzene at relatively low temperatures. [Pg.194]

Not unexpectedly, alkylation of the double carbonylated complex proceeds via a base-catalysed interfacial enolization step, but it is significant that the initial double carbonylation step also involves an interfacial reaction, as it has been shown that no pyruvic acid derivatives are obtained at low stirring rates. Further evidence comes from observations of the cobalt-catalysed carbonylation of secondary benzyl halides [8], where the overall reaction is more complex than that indicated by Scheme 8.3. In addition to the expected formation of the phenylacetic and phenylpyruvic acids, the reaction with 1-bromo-l-phenylethane also produces 3-phenylpropionic acid, 2,3-diphenylbutane, ethylbenzene and styrene (Scheme 8.4). The absence of secondary carbonylation of the phenylpropionylcobalt tetracarbonyl complex is consistent with the less favourable enolization of the phenylpropionyl group, compared with the phenylacetyl group. [Pg.370]


See other pages where Alkylation, of ethylbenzene is mentioned: [Pg.519]    [Pg.477]    [Pg.478]    [Pg.478]    [Pg.485]    [Pg.485]    [Pg.490]    [Pg.276]    [Pg.936]    [Pg.89]    [Pg.163]    [Pg.86]    [Pg.113]    [Pg.202]    [Pg.365]    [Pg.513]    [Pg.85]    [Pg.331]    [Pg.240]   
See also in sourсe #XX -- [ Pg.235 ]




SEARCH



Ethylbenzene

Ethylbenzene by Alkylation of Benzene with Ethylene

Ethylbenzene, by alkylation of benzene

Of ethylbenzene

© 2024 chempedia.info