Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aliphatic alkyl halides

Reaction of the dilithiated species 416 and 419 with alkyl halides, aliphatic and aromatic aldehydes, and TMSC1 leads to products 421 and 422 in modest yields (Scheme 129) [83TL4735 86JCR(S)20]. In cases of the N-benzyl amides corresponding to 415 and 418, small amounts of benzylic functionalization is observed (see also later). The methyl and carbinol derivatives corresponding to 421 and 422 were quantitively hydrolyzed into useful synthons 423 and 424, and 425 and 426, respectively. [Pg.259]

This direct sulphonation should be compared with the indirect methods for the preparation of aliphatic sulphonic acids, e.g., oxidation of a thiol (RSH -> RSOjH), and interaction of an alkyl halide with sodium sulphite to give the sodium sulphonate (RBr + Na,SO, -> RSO,Na + NaBr). [Pg.178]

Aliphatic nitro compounds. These are isomeric with the alkyl nitrites and may be prepared from the alkyl halide and silver nitrite, for example C,H,aBr + AgNOj — C Hj NO + AgBr... [Pg.302]

The mixed aliphatic - aromatic ethers are somewhat more reactive in addition to cleavage by strong hydriodio acid and also by constant b.p. hydrobromio acid in acetic acid solution into phenols and alkyl halides, they may be bromi-nated, nitrated and converted into sulphonamides (Section IV,106,2). [Pg.1067]

The reactivities of the substrate and the nucleophilic reagent change vyhen fluorine atoms are introduced into their structures This perturbation becomes more impor tant when the number of atoms of this element increases A striking example is the reactivity of alkyl halides S l and mechanisms operate when few fluorine atoms are incorporated in the aliphatic chain, but perfluoroalkyl halides are usually resistant to these classical processes However, formal substitution at carbon can arise from other mecharasms For example nucleophilic attack at chlorine, bromine, or iodine (halogenophilic reaction, occurring either by a direct electron-pair transfer or by two successive one-electron transfers) gives carbanions These intermediates can then decompose to carbenes or olefins, which react further (see equations 15 and 47) Single-electron transfer (SET) from the nucleophile to the halide can produce intermediate radicals that react by an SrnI process (see equation 57) When these chain mechanisms can occur, they allow reactions that were previously unknown Perfluoroalkylation, which used to be very rare, can now be accomplished by new methods (see for example equations 48-56, 65-70, 79, 107-108, 110, 113-135, 138-141, and 145-146)... [Pg.446]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

A major MOCVD group is that of the alkyls. These are formed by reacting an aliphatic hydrocarbon or an alkyl halide with a metal.[" 1 These hydrocarbons are composed of chains of carbon atoms as shown below 1 1... [Pg.87]

It is possible to take advantage of the differing characteristics of the periphery and the interior to promote chemical reactions. For example, a dendrimer having a non-polar aliphatic periphery with highly polar inner branches can be used to catalyse unimolecular elimination reactions in tertiary alkyl halides in a non-polar aliphatic solvent. This works because the alkyl halide has some polarity, so become relatively concentrated within the polar branches of the dendrimer. This polar medium favours the formation of polar transition states and intermediates, and allows some free alkene to be formed. This, being nonpolar, is expelled from the polar region, and moves out of the dendrimer and into the non-polar solvent. This is a highly efficient process, and the elimination reaction can be driven to completion with only 0.01 % by mass of a dendrimer in the reaction mixture in the presence of an auxiliary base such as potassium carbonate. [Pg.144]

Tertiary aliphatic amines are also cleaved by HI, but useful products are seldom obtained. Tertiary amines can be cleaved by reaction with phenyl chloroformate R3N -h ClCOOPh —> RCl 4- R2NCOOPh. a-Chloroethyl chloroformate behaves similarly.Alkyl halides may be formed when quaternary ammonium salts are heated R4N+X" R3N -)- RX. ... [Pg.522]

Ammonia has always been the starting material for the synthesis of aliphatic amines. Thus, processes have been developed for the condensation of NH3 with alkyl halides (Hoffman reaction) or with alcohols in the presence of various catalysts. The latter reachon, first discovered by Sabatier in 1909 [8, 9] is nowadays the main method of industrial production of light amines (e.g. methylamines 600 000 t/yr) [5]. [Pg.92]

Alkyl halides in the presence of silver oxide will convert any non-hindered carboxylic acid (or its salt) to the corresponding alkyl ester in minutes, and phenolic or thiol groups will also be alkylated rapidly [436]. Hydroxyl groups are alkylated slowly an ot always to completion. The alkyl halides most frequently uJQp are the lower molecular weight aliphatic... [Pg.944]

Strongly influences rates of hydrolysis. Hydrolysis of aliphatic and alkylic halides optimum at neutral to basic conditions.43 Other hydrolysis reactions tend to be faster at either high or low pH.186... [Pg.807]

Unsymmetrical secondary aliphatic amines have been prepared by reaction of alkyl halides with benzylidene amines and subsequent hydrolysis 814 by reaction of alkyl halides with alkyl amines 5 by reduction of amine-aldehyde adducts 8-8 and by dealkylation of tertiary amines with dibenzoyl peroxide. ... [Pg.38]

In other reactions also the OH-group of the phenols shows itself to be more reactive than that of the aliphatic alcohols. Phenols, but not alcohols, react easily with diazomethane. With other alkylating agents also, such as alkyl halides, and dialkyl sulphates, the phenols react even in aqueous alkaline solution whilst the alcohols do not react under such conditions. Benzoyl derivatives, most of which crystallise readily, are excellently adapted for the characterisation of phenols (Schotten-Baumann reaction). [Pg.241]

The combined action of alkyl halides and carbon dioxide on aliphatic primary or secondary amines affords alkyl carbamates 304 or 305, respectively. The reactions are carried out in DMF355 or in the presence of a pentaalkylguanidine356. [Pg.595]

The application of phase-transfer catalysis to the Williamson synthesis of ethers has been exploited widely and is far superior to any classical method for the synthesis of aliphatic ethers. Probably the first example of the use of a quaternary ammonium salt to promote a nucleophilic substitution reaction is the formation of a benzyl ether using a stoichiometric amount of tetraethylammonium hydroxide [1]. Starks mentions the potential value of the quaternary ammonium catalyst for Williamson synthesis of ethers [2] and its versatility in the synthesis of methyl ethers and other alkyl ethers was soon established [3-5]. The procedure has considerable advantages over the classical Williamson synthesis both in reaction time and yields and is certainly more convenient than the use of diazomethane for the preparation of methyl ethers. Under liquidrliquid two-phase conditions, tertiary and secondary alcohols react less readily than do primary alcohols, and secondary alkyl halides tend to be ineffective. However, reactions which one might expect to be sterically inhibited are successful under phase-transfer catalytic conditions [e.g. 6]. Microwave irradiation and solidrliquid phase-transfer catalytic conditions reduce reaction times considerably [7]. [Pg.69]

The phase-transfer catalysed reaction of alkyl halides with potassium carbonate in dimethylacetamide, or a potassium carbonate/potassium hydrogen carbonate mixture in toluene, provides an excellent route to dialkyl carbonates without recourse to the use of phosgene [55, 56], An analogous reaction of acid chlorides with sodium hydrogen carbonate in benzene, or acetonitrile, produces anhydrides (3.3.29.B, >80%), although there is a tendency in acetonitrile for aliphatic acid chlorides to hydrolyse yielding the acids [57]. [Pg.97]

One of the most important reactions for the laboratory synthesis of primary aliphatic nitro compounds was discovered by V. Meyer and O. Stiiber in 1872 and involves treating alkyl halides with a suspension of silver nitrite in anhydrous diethyl ether. Benzene, hexane and petroleum ether have also been used as solvents for these reactions which are usually conducted between 0 °C and room temperature in the absence of light. [Pg.7]

The synthesis of aliphatic nitro compounds from the reaction of alkyl halides with alkali metal nitrites was discovered by Kornblum and co-workers and is known as the modified Victor Meyer reaction or the Kornblum modification. The choice of solvent in these reactions is crucial when sodium nitrite is used as the nitrite soiuce. Both alkyl halide and nitrite anion must be in solution to react, and the higher the concentration of nitrite anion, the faster the reaction. For this reason, both DMF and DMSO are widely used as solvents, with both able to dissolve appreciable amounts of sodium nitrite. Although sodium nitrite is more soluble in DMSO than DMF the former can react with some halide substrates.Urea is occasionally added to DMF solutions of sodium nitrite to increase the solubility of this salt and hence increase reaction rates. Other alkali metal nitrites can be used in these reactions, like lithium nitrite,which is more soluble in DMF than sodium nitrite but is also less widely available. [Pg.9]


See other pages where Aliphatic alkyl halides is mentioned: [Pg.21]    [Pg.166]    [Pg.40]    [Pg.88]    [Pg.67]    [Pg.242]    [Pg.277]    [Pg.98]    [Pg.35]    [Pg.126]    [Pg.47]    [Pg.81]    [Pg.482]    [Pg.596]    [Pg.39]    [Pg.59]    [Pg.12]    [Pg.113]    [Pg.85]    [Pg.1011]    [Pg.208]    [Pg.208]   


SEARCH



Aliphatic Alkanes, Alkenes, Alkynes, and Alkyl Halides

Alkyl halides nucleophilic aliphatic

Halides aliphatic

Nucleophilic Aliphatic Substitution Preparation of Alkyl Halides

© 2024 chempedia.info