Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolism alkenes

Alkene monooxygenase (AMO) from Rhodococcus rhodochrous B-276 (also known as Nocardia corallina) is a multicomponent oxygenase that catalyzes the stereoselective insertion of an oxygen atom from O2 into aliphatic alkenes, yielding the corresponding chiral epoxides (Table 1) [151], This reaction is the first step in the pathway of the alkene metabolism. AMO utilizes substrates ranging from C3-... [Pg.293]

Heterogeneous reaction (Section 6 1) A reaction involving two or more substances present in different phases Hydro genation of alkenes is a heterogeneous reaction that takes place on the surface of an insoluble metal catalyst Heterolytic cleavage (Section 4 16) Dissociation of a two electron covalent bond in such a way that both electrons are retained by one of the initially bonded atoms Hexose (Section 25 4) A carbohydrate with six carbon atoms High density lipoprotein (HDL) (Section 26 11) A protein that carries cholesterol from the tissues to the liver where it is metabolized HDL is often called good cholesterol Histones (Section 28 9) Proteins that are associated with DNA in nucleosomes... [Pg.1285]

Csanady GA, Laib JG. Metabolic transformation of halogenated and other alkenes- a theoretical approach. Estimation of metabolic reactivities for in vivo conditions. Toxicology 1995 75 217-23. [Pg.463]

Considerable attention has been directed to the epoxidation of alkenes on account of interest in the epoxides as industrial intermediates. The wide metabolic capability of MMO, which has already been noted, has been applied to the epoxidation of C2, C3, and C4 alkenes (Patel et al. 1982). A large number of propane-utilizing bacteria are also effective in carrying out the epoxidation of alkenes (Hou et al. 1983). Especially valuable is the possibility of using microorganisms for resolving racemic mixtures of epoxides. For example, this has been realized for cis- and tra 5 -2,3-epoxypentanes... [Pg.307]

Krum JG, SA Ensign (2001) Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2. J Bacterial 183 2172-2177. [Pg.330]

Small FJ, SA Ensign (1997) Alkene monooxygenase from Xanthobacter strain Py2. Purification and characterization of a four-component system central to the bacterial metabolism of aliphatic alkenes. J Biol Chem 272 24913-24920. [Pg.334]

Investigation of the metabolism of ezlopitant alkene (CJ-12,458), an active metabolite 93... [Pg.225]

A few years later, the same group extended this strategy in order to access metabolically stable C-glycosyl clusters containing long-arm spacers via a sequence of transition metal-catalyzed transformations (Scheme 11).93 In this context, crossmetathesis reactions of various C-glycosyl compounds with alkenes having available... [Pg.193]

Diol epoxides, a very special and highly reactive subclass of alkene oxides encountered in the metabolism of polycyclic aromatic hydrocarbons. [Pg.609]

The data in Table 10.1 suggest that the reactivity of epoxide hydrolase toward alkene oxides is highly variable and appears to depend, among other things, on the size of the substrate (compare epoxybutane to epoxyoctane), steric features (compare epoxyoctane to cycloalkene oxides), and electronic factors (see the chlorinated epoxides). In fact, comprehensive structure-metabolism relationships have not been reported for substrates of EH, in contrast to some narrow relationships that are valid for closely related series of substrates. A group of arene oxides, along with two alkene oxides to be discussed below (epoxyoctane and styrene oxide), are compared as substrates of human liver EH in Table 10.2 [119]. Clearly, the two alkene oxides are among the better substrates for the human enzyme, as they are for the rat enzyme (Table 10.1). [Pg.634]

Some drugs fall within the class of functionalized alkenes discussed here. Thus, the anti-inflammatory agent alclophenac (10.63) contains an O-allyl group. Its epoxide was found as a stable metabolite in the urine of mice and humans, and so was the diol, proving the involvement of the epoxide-diol pathway in the metabolism of this drug. The epoxide proved mutagenic, but only in the absence of a rat liver S-9 suspension (which contains EH) [141]. [Pg.642]

Not unexpectedly, cycloalkene oxides are equally important as alkene oxides in medicinal chemistry and drug metabolism, as illustrated below with a few selected examples. Other compounds of interest that will not be discussed here include epoxytetrahydrocannabinols and endogenous 16,17-ep-oxy steroids. [Pg.663]

Boyd, D.R., McMordie, R.A S., Sharma, N.D., Dalton, H., Williams, P. and Jenkins, R.O., Stereospecific benzylic hydroxylation of bicyclic alkenes by Pseudomonas putida isolation of (+)-/ -l-hydroxy-l,2-dihydronaphthalene, an arene hydrate of naphthalene from metabolism of... [Pg.375]

Coenzyme M was shown to function as the central cofactor of aliphatic epoxide carboxylation in Xanthobacter strain Py2, an aerobe from the Bacteria domain (AUen et al. 1999). The organism metabolizes short-chain aliphatic alkenes via oxidation to epoxyalkanes, followed by carboxylation to p-ketoacids. An enzyme in the pathway catalyzes the addition of coenzyme M to epoxypropane to form 2-(2-hydroxypropylthio)ethanesulfonate. This intermediate is oxidized to 2-(2-ketopropylthio)ethanesulfonate, followed by a NADPH-dependent cleavage and carboxylation of the P-ketothioether to form acetoacetate and coenzyme M. This is the only known function for coenzyme M outside the methanoarchaea. [Pg.145]

In eukaryotes, such as mammals and fungi, epoxide hydrolases play a key role in the metabolism of xenobiotics, in particular of aromatic systems [30,31 ]. On the other hand, in prokaryotes (e.g. bacteria) these enzymes are essential for the utilization of alkenes as carbon-source. In general, aromatics can be metabolized via two different pathways (Scheme 5) (i) dioxetane formation via dioxyge-... [Pg.149]

Electron-rich alkenes are the more reactive jr-bond snbstrates towards epoxidation by the electrophilic dioxiranes Some typical examples of these oxidations are snm-marized in Scheme 2. Since the resnlting epoxides are nsnally hydrolytically and ther-molytically qnite labile, snch oxidations are best carried ont with isolated dioxiranes. For example, the 8,9 epoxide of the well-known aflatoxin B, postnlated as potent carcinogen in the oxidative metabolism of this natural product, escaped numerous efforts to prepare it by conventional epoxidations because of its sensitivity towards hydrolysis . The synthesis of this labile epoxide was readily accomplished by employing a solution of the isolated DMD at room temperature (equation 2), and its mutagenicity unequivocally... [Pg.1139]

Oxidation Athene Epoxidation. Alkenes may react to produce epoxides (alternatively, sometimes, the alkenes do not react and are metabolically stable). The epoxide is unstable and is subject to ring opening via a nucleophilic attack. The anticonvulsant drug carbamazepine is metabolized via epoxidation to yield carbamazepine-10,11-epoxide in turn, this is rapidly opened to yield carbamazepine-10,ll-diol. [Pg.147]

Alkenes. Alkenes are, in general, metaholically stable. The majority of alkene-containing drugs do not exhibit significant rapid metabolism at the double bond. There are some isolated examples of alkene-containing compounds that undergo epoxidation, catalyzed by mixed-function oxidase, or that add water across the double bond to give an alcohol. [Pg.150]

Migliore, L., Rossi, A.M. Loprieno, N. (1982) Mutagenic action of stracturally related alkene oxides on Schizosaccharomyces pombe the influence, in vitro , of mouse-liver metabolizing system. Mutat Res., 102, 425 37 Montaldo, C., Dore, M. Congiu, L. (1984) Glycidol, a new depletor of hver glutathione. [Pg.484]

Fortunately, there is now a comprehensive body of knowledge on the metabolic reactions that produce reactive (toxic) intermediates, so the drug designer can be aware of what might occur, and take steps to circumvent the possibility. Nelson (1982) has reviewed the classes and structures of drugs whose toxicities have been linked to metabolic activation. Problem classes include aromatic and some heteroaromatic nitro compounds (which may be reduced to a reactive toxin), and aromatic amines and their N-acylated derivatives (which may be oxidized, before or after hydrolysis, to a toxic hydroxylamine or iminoquinone). These are the most common classes, but others are hydrazines and acyl-hydrazines, haloalkanes, thiols and thioureas, quinones, many alkenes and alkynes, benzenoid aromatics, fused polycyclic aromatic compounds, and electron-rich heteroaromatics such as furans, thiophenes and pyrroles. [Pg.93]

Desaturation of alkyl groups. This novel reaction, which converts a saturated alkyl compound into a substituted alkene and is catalyzed by cytochromes P-450, has been described for the antiepileptic drug, valproic acid (VPA) (2-n-propyl-4-pentanoic acid) (Fig. 4.29). The mechanism proposed involves formation of a carbon-centered free radical, which may form either a hydroxy la ted product (alcohol) or dehydrogenate to the unsaturated compound. The cytochrome P-450-mediated metabolism yields 4-ene-VPA (2-n-propyl-4pentenoic acid), which is oxidized by the mitochondrial p-oxidation enzymes to 2,4-diene-VPA (2-n-propyl-2, 4-pentadienoic acid). This metabolite or its Co A ester irreversibly inhibits enzymes of the p-oxidation system, destroys cytochrome P-450, and may be involved in the hepatotoxicity of the drug. Further metabolism may occur to give 3-keto-4-ene-VPA (2-n-propyl-3-oxo-4-pentenoic acid), which inhibits the enzyme 3-ketoacyl-CoA thiolase, the terminal enzyme of the fatty acid oxidation system. [Pg.92]

A variety of halogenated alkanes and alkenes such as hexachlorobutadiene, chlorotrifluoro-ethylene, tetrafluoroethylene, and trichloroethylene (Fig. 7.28) are nephrotoxic. Studies have shown that metabolic activation is necessary for toxicity, but this does not involve cytochromes P-450. Thus, hexachlorobutadiene (HCBD) is a potent nephrotoxin in a variety of mammalian species, and the kidney is the major target. [Pg.328]


See other pages where Metabolism alkenes is mentioned: [Pg.215]    [Pg.650]    [Pg.231]    [Pg.215]    [Pg.650]    [Pg.231]    [Pg.763]    [Pg.63]    [Pg.201]    [Pg.78]    [Pg.237]    [Pg.50]    [Pg.86]    [Pg.87]    [Pg.126]    [Pg.6]    [Pg.297]    [Pg.634]    [Pg.652]    [Pg.652]    [Pg.697]    [Pg.148]    [Pg.150]    [Pg.425]    [Pg.9]    [Pg.79]    [Pg.184]   
See also in sourсe #XX -- [ Pg.15 , Pg.629 ]




SEARCH



Drug metabolism alkene

© 2024 chempedia.info