Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aliphatic aromatic esters

Wang, C.-H., Tsai, P.-H., Kan, L.-S., Chen, C. W. Synthesis and characterization of copolymeric aliphatic-aromatic esters derived from terephthalic acid, 1,4-butanediol, and -caprolactone by physical, thermal, and mechanical properties and NMR measurements. LADDlPoIvm.ScL 2013,127,4385-4394. [Pg.790]

The biocompatible dimerized fatty acid (DFA)-based poly(aliphatic-aromatic ester) elastomers (PED) have been synthesized and studied for biomedical applications by El Fray et al. [194-200]. The design of nanostructured elastomeric biomaterials (mimicking biological materials) has been realized by using renewable resources, i.e., DFA. They are prepared by transesterification and polycondensation from the melt (see Section 7). The exceptional properties of DFA, e.g., excellent resistance to oxidative and thermal degradation, allow the preparation of PEDs without the use of thermal (often irritating) stabilizers. This is a particularly important feature making these polymers environmentally friendly and additive-free. What is equally important, by the use of the same method and stabilizer-free conditions, it was possible to prepare specially modified PED copolymers with an increased surface hydrophobicity. [Pg.102]

El Fray M and Altstadt V (2003) Fatigue behaviour of multiblock thermoplastic elastomers. 1. Stepwise increasing load testing of poly(aliphatic/aromatic-ester) copolymers, Polymer 44 4635-4642. [Pg.116]

In general the method is more satisfactory with esters of aromatic acids than with esters of aliphatic acids. Esters of alcohols other than methyl and ethyl are best treated by first converting them into methyl esters thus Heat together under reflux i ml. of the higher ester, 5 ml. of methanol and 0-2 g. of sodium methoxide. [In place of the sodium methoxide, it suffices to add o i g. of metallic sodium to the methanol.] After refluxing, distil off the excess of methanol (b.p, 65 ). The residue is then heated under reflux with benzylamine as described above. [Pg.358]

Aromatic esters may be prepared by methods similar to those already described for aliphatic esters (see discussion preceding Section 111,95). These include —... [Pg.780]

The experimental details already given for the detection and characterisation of aliphatic esters (determination of saponification equivalents h3 diolysis Section 111,106) apply equally to aromatic esters. A sfight modification in the procediu-e for isolating the products of hydrolysis is necessary for i)henolic (or phenyl) esters since the alkaline solution will contain hoth the alkali phenate and the alkali salt of the organic acid upon acidification, both the phenol and the acid will be hberated. Two methods may be used for separating the phenol and the acid ... [Pg.786]

Torlon-type polymers are unaffected by aliphatic, aromatic, chlorinated and fluorinated hydrocarbons, dilute acids, aldehydes, ketones, ethers and esters. Resistance to alkalis is poor. They have excellent resistance to radiation. If a total of 10 Mrad is absorbed at a radiation dosage of 1 Mrad/h the tensile strength decreases by only 5%. [Pg.524]

The mechanism of this reaction has been studied by several groups [133,174-177]. The consensus is that interaction of ester with the phenolic resole leads to a quinone methide at relatively low temperature. The quinone methide then reacts rapidly leading to cure. Scheme 11 shows the mechanism that we believe is operative. This mechanism is also supported by the work of Lemon, Murray, and Conner. It is challenged by Pizzi et al. Murray has made the most complete study available in the literature [133]. Ester accelerators include cyclic esters (such as y-butyrolactone and propylene carbonate), aliphatic esters (especially methyl formate and triacetin), aromatic esters (phthalates) and phenolic-resin esters [178]. Carbamates give analogous results but may raise toxicity concerns not usually seen with esters. [Pg.916]

The tartrate ester modified allylboronates, the diisopropyl 2-allyl-l,3,2-dioxaborolane-4,5-di-carboxylates, are attractive reagents for organic synthesis owing to their ease of preparation and stability to storage71. In the best cases these reagents are about as enantioselective as the allyl(diisopinocampheyl)boranes (82-88% ee with unhindered aliphatic aldehydes), but with hindered aliphatic, aromatic, a,/l-unsaturated and many a- and /5-alkoxy-substituted aldehydes the enantioselectivity falls to 55-75% ee71a-b... [Pg.291]

A novel application of a phenyl aryldiazosulfone was found by Kessler et al. (1990). l-[4-(7V-Chlorocarbonyl-7V-methylamino)phenyl]-2-(phenylsulfonyl)diazene (6.18) is an acid chloride with a potential diazonio group. The above authors showed that in organic solvents (THF, etc.) this compound reacts easily, as expected, with nucleophiles (HNu), e.g., with aliphatic, aromatic, or heterocyclic amines, with cystine dimethyl ester, or with 4-methoxyphenol at the carbonyl function, yielding... [Pg.118]

Volume 8 Volume 9 Volume 10 Volume 12 Volume 13 Proton Transfer Addition and Elimination Reactions of Aliphatic Compounds Ester Formation and Hydrolysis and Related Reactions Electrophilic Substitution at a Saturated Carbon Atom Reactions of Aromatic Compounds Section 5. POLYMERISATION REACTIONS (3 volumes)... [Pg.343]

Hie ester linkage of aliphatic and aliphatic-aromatic copolyesters can easily be cleaved by hydrolysis under alkaline, acid, or enzymatic catalysis. This feature makes polyesters very attractive for two related, but quite different, applications (i) bioresorbable, bioabsorbable, or bioerodible polymers and (ii) environmentally degradable and recyclable polymers. [Pg.27]

From the preceding discussion, it is easily understood that direct polyesterifications between dicarboxylic acids and aliphatic diols (Scheme 2.8, R3 = H) and polymerizations involving aliphatic or aromatic esters, acids, and alcohols (Scheme 2.8, R3 = alkyl group, and Scheme 2.9, R3 = H) are rather slow at room temperature. These reactions must be carried out in the melt at high temperature in the presence of catalysts, usually metal salts, metal oxides, or metal alkoxides. Vacuum is generally applied during the last steps of the reaction in order to eliminate the last traces of reaction by-product (water or low-molar-mass alcohol, diol, or carboxylic acid such as acetic acid) and to shift the reaction toward the... [Pg.61]

In order to obtain anionic polyoxyethylene phosphate surfactants, either the terminal hydroxy group of a polyoxyethylated hydrophobic substance is reacted with a phosphorylating agent or a phosphate ester is oxalkylated. Most often aliphatic and aliphatic-aromatic alcohols are first treated with an alkylene oxide and afterward with one of the phosphorylating agents, such as P4OI0, POCl3, phosphoric acid, or polyphosphoric acid [39-48]. [Pg.561]

The silica gel surface is extremely polar and, as a result, must often be deactivated with a polar solvent such as ethyl acetate, propanol or even methanol. The bulk solvent is usually an n-alkane such as n-heptane and the moderators (the name given to the deactivating agents) are usually added at concentrations ranging from 0.5 to 5% v/v. Silica gel is very effective for separating polarizable materials such as the aromatic hydrocarbons, nitro hydrocarbons (aliphatic and aromatic), aliphatic ethers, aromatic esters, etc. When separating polarizable substances as opposed to substances with permanent dipoles, mixtures of an aliphatic hydrocarbon with a chlorinated hydrocarbon such as chlorobutane or methylene dichloride are often used as the mobile... [Pg.304]

Exocyclic reactions for aromatic carboxylic esters 174 Exocyclic reactions for aliphatic carboxylic esters 187 Endocyclic reactions for carboxylic esters 191 Carbon acid participation for carboxylic esters 195 Effective molarities 198 Ring size 199 Initiating nucleophile 200 Phosphate and sulphonate esters 200... [Pg.171]

Mammalian esterases have been classified into three groups according to specificity for substates and inhibitors (110). In terms of overall hydrolytic activity in mammals, the most important class of esterases is that of the B-esterases, which are principally active with aliphatic esters and amides. A-Esterases are important for aromatic esters and organophosphorus esters, and C-esterases are active with acetyl esters. In general, the specificity of mammalian esterases is determined by the nature of substituent groups (acetyl, alkyl, or aryl) rather than the heteroatom (O, N, or S) that is adjacent to the carboxy group. That is, the same esterase would likely catalyze hydrolysis of an ester, amide, or thioester as long as the substituents were identical except for the heteroatom (110). [Pg.354]

This method for preparing 2-phenyl-1-pyrroline, and assorted 2-substituted 1-pyrrolines, is one of the best currently available, particularly because it reproducibly affords clean materials. Generally, the procedure is amenable to various aromatic esters 2 it has also been applied successfully to aliphatic esters (Table I).3 An advantage of this method is the use of readily available, inexpensive N-vinyl-pyrrolidin-2-one as a key starting material. This compound serves effectively as a 3-aminopropyl carbanion equivalent. The method illustrated in this procedure has been extended to include the synthesis of 2,3-disubstituted pyrrolines. Thus, alkylation of the enolate of the intermediate keto lactam, followed by hydrolysis, leads to various disubstituted pyrrolines in good yields (see Table II).3... [Pg.110]

Copolyesters (such as BIOMAX ) which combine aromatic esters with aliphatic esters or other polymer units (e.g. ethers and amides) provide the opportunity to adjust and control the degradation rates. These added degrees of freedom on polymer composition provide the opportunity to rebalance the polymer to more specifically match application performance in physical properties, while still maintaining the ability to adjust the copolyesters to complement the degradation of natural products for the production of methane or humic substances. Since application performance requirements and application specific environmental factors and degradation expectations vary broadly, copolyesters are, and will continue to be, an important class of degradable polyesters. [Pg.606]

The thermal stability of hyperbranched polymers is related to the chemical structure in the same manner as for linear polymers for example, aromatic esters are more stable than aliphatic ones. In one case, the addition of a small amount of a hyperbranched polyphenylene to polystyrene was found to improve the thermal stability of the blend as compared to the pure polystyrene [31]. [Pg.22]


See other pages where Aliphatic aromatic esters is mentioned: [Pg.236]    [Pg.75]    [Pg.251]    [Pg.277]    [Pg.282]    [Pg.236]    [Pg.75]    [Pg.251]    [Pg.277]    [Pg.282]    [Pg.404]    [Pg.11]    [Pg.13]    [Pg.132]    [Pg.296]    [Pg.606]    [Pg.119]    [Pg.18]    [Pg.40]    [Pg.1183]    [Pg.1212]    [Pg.119]    [Pg.203]    [Pg.368]    [Pg.191]    [Pg.68]    [Pg.209]    [Pg.179]    [Pg.182]    [Pg.148]    [Pg.155]   
See also in sourсe #XX -- [ Pg.251 ]




SEARCH



Aliphatic and Aromatic Esters

Aliphatic esters

Aliphatic—aromatic

Aromatic esters

Esters aliphatic: retrosynthetic strategies for aromatic

© 2024 chempedia.info