Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exocyclic reactions

The reasons for this apparent polywalent activity toward nitrosation (N ring reaction, N exocyclic reaction, nitrosation on the 5-position) are not... [Pg.67]

Exocyclic reactions for aromatic carboxylic esters 174 Exocyclic reactions for aliphatic carboxylic esters 187 Endocyclic reactions for carboxylic esters 191 Carbon acid participation for carboxylic esters 195 Effective molarities 198 Ring size 199 Initiating nucleophile 200 Phosphate and sulphonate esters 200... [Pg.171]

Reactions of secondary arsines with CSj proceed in the same way as those of the corresponding phosphines. The phosphino- and arsino-dithioformates coordinate via one sulfur atom and the phosphorus or arsenic atom. H NMR, IR and UV-visible spectra show that the second sulfur atom of the CS2 fragment is exocyclic. Reaction of (92) with (93) gives hexacoordinated (94) with the evolution of 1 mol of CO. ... [Pg.1235]

If reaction of backbiting is considered, involving the intrachain acetal group, the macrocyclic oxonium cation is about 50% converted to free macrocycle. This is because for non-strained, sufficiently large cyclic oxonium cations, the reactivities of the two acetal methylene groups at the oxonium oxygen atom - endocyclic and exocyclic - are practically equal, which results in equal probabilities of endo- and exocyclic reactions. The exocyclic attack of monomer leads to free... [Pg.40]

Figure 10.3-40. The rating for the disconnection strategy carbon-heteroatom bonds is illustrated, Please focus on the nitrogen atom of the tertiary amino group. It is surrounded by three strategic bonds with different values. The low value of 9 for one ofthese bonds arises because this bond leads to a chiral center. Since its formation requires a stereospecific reaction the strategic weight of this bond has been devalued. In contrast to that, the value of the bond connecting the exocyclic rest has been increased to 85, which may be compared with its basic value as an amine bond. Figure 10.3-40. The rating for the disconnection strategy carbon-heteroatom bonds is illustrated, Please focus on the nitrogen atom of the tertiary amino group. It is surrounded by three strategic bonds with different values. The low value of 9 for one ofthese bonds arises because this bond leads to a chiral center. Since its formation requires a stereospecific reaction the strategic weight of this bond has been devalued. In contrast to that, the value of the bond connecting the exocyclic rest has been increased to 85, which may be compared with its basic value as an amine bond.
Palladium catalyzed cycloisomerizations of 6-cn-l-ynes lead most readily to five-membered rings. Palladium binds exclusively to terminal C = C triple bonds in the presence of internal ones and induces cyclizations with high chemoselectivity. Synthetically useful bis-exocyclic 1,3-dienes have been obtained in high yields, which can, for example, be applied in Diels-Alder reactions (B.M. Trost, 1989). [Pg.84]

With the more acidic 2-acetamido-4-R-thiazoles. using the weaker base NaOH as condensation agent, a mixture of ring (45) and exocyclic N-alkylation (46) may be observed (Scheme 33) (121). Reaction of 2-acetamido-4-methylthiazole in alcoholic sodium ethoxide solution with a variety of alkylating agents has been reported (40-44). [Pg.35]

Reactions of the 2-amino-4,5-substituted thiazole (52) in acetic acid with ethylene oxide has been reported to give the N-exocyclic disubstitution product (S3) (201) in a 40% yield (Scheme 38). The reactive species in this reaction is probably the carbocation generated in acetic acid by ethvlene oxide. [Pg.38]

If the medium is sufficiently basic to generate the arabident anion 31. mixtures of products resulting from N-nng and N-exocyclic reactivity are observed. Here again steric effects can preferentially orient the whole reaction toward one of the two nitrogens. A general study clearly delineating the rules of behavior for 31 accordine to the nature of R. the... [Pg.39]

Both carbonyl groups of terephthaldehyde are reported to react with the exocyclic nitrogen of 2-aminothiazole yielding 1.4-phenylene bis(2-methyleneamino)thiazole. The same report describes the reactions of 2-amino-4-phenylthiazole with terephth aldehyde and salicylaldehyde as yielding 64 and 65, respectively (Scheme 45) (215), whose structures are based on ultraviolet and infrared spectra. [Pg.41]

The metabolite of 2-amino-4-phenylthiazole (used as an anaesthetic for fish) was identified (223) as 2-amino-4-phenylthiazole 2-N, -d-glucopyranosiduronic acid (71) (Scheme 50). The formation of this compound probably involves the reaction of the exocyclic nitrogen on the Open-chain form of the acid. The isolation of this metabolite is part of a very Systematic study by Japanese researchers related to the anaesthetic... [Pg.42]

Small amounts of salt-like addition products (85) formed by reaction on the ring nitrogen may be present in the medium. (Scheme 60) but. as the equilibrium is shifted by further reaction on the exocyclic nitrogen, the only observed products are exocyclic acylation products (87) (130. 243. 244). Challis (245) reviewed the general features of acylation reactions these are intervention of tetrahedral intermediates, general base catalysis, nucleophilic catalysis. Each of these features should operate in aminothiazoles reactivity. [Pg.47]

Vollmann found that the reaction between l-imino-3-amino isoin dolenine (124) and 2-amino-4-methylthiazole is catalyzed by ammonium chloride and involves the exocyclic nitrogen (285). This reaction (Scheme 82) was later used to prepare dyes (286). [Pg.56]

The high reactivity of the exocyclic 4-NH- group is again illustrated by the reaction of 2-imino-3-phenyl-4-amino-5-(ethoxycarbonyl)-4-thiazoline with EtOjCCH SCN, which yields 134 (296), and by the intramolecular preparation of the dihydrothiazolo[4,5-h]pyridine derivative 136 (297) (Scheme 89). [Pg.58]

Scheme 91). Yamamoto et al. have shown unambiguously that the reaction takes place on the N-exocyclic atom (303). [Pg.59]

Treatment of 2-imino-3-phenyl-4-amino-(5-amido)-4-thiazoline with isocyanates or isothiocyanates yields the expected product (139) resulting from attack of the exocyclic nitrogen on the electrophilic center (276). Since 139 may be acetylated to thiazolo[4,5-d]pyrimidine-7-ones or 7-thiones (140). this reaction provides a route to condensed he erocycles (Scheme 92). [Pg.60]

Butler recently reviewed the diazotization of heterocyclic amines (317). Reactions with nitrous acid yield in most cases N-exocyclic compounds. Since tertiary amines are usually regarded as inen to nitrosation, this... [Pg.65]

These halogenation reactions all take place in the 5-position (408. 409. 430) even when there is a phenyl or a 2-pyridyl (382) substituent on the exocyclic nitrogen. Crystalline perbromides have been isolated (166. 320. [Pg.77]

Bromination of 2-dialkylaminothiazoles has been reported to be successful by one author (415) and to fail by others (375. 385). If the mechanism of direct electrophilic substitution is accepted for these compounds, it is difficult to understand why alkyl substitution on such a remote position as exocyclic nitrogen may inhibit this reaction in the C-5 position. [Pg.78]

This genera] scheme could be used to explain hydrogen exchange in the 5-position, providing a new alternative for the reaction (466). This leads us also to ask whether some reactions described as typically electrophilic cannot also be rationalized by a preliminary hydration of the C2=N bond. The nitration reaction of 2-dialkylaminothiazoles could occur, for example, on the enamine-like intermediate (229) (Scheme 141). This scheme would explain why alkyl groups on the exocyclic nitrogen may drastically change the reaction pathway (see Section rV.l.A). Kinetic studies and careful analysis of by-products would enable a check of this hypothesis. [Pg.85]

The principal reactions of this class of compounds are summarized in Scheme 172. In most of these reactions the reactive nucleophilic center is the terminal NHj group, although the other exocyclic nitrogen may also be involved, as shown by acetylation, which yields 284 and 285. However, the structure of compound 281 is not the one proposed in a recent report (1582) that attributes the attack to the other exocyclic nitrogen. The formation of osazones (287) from sugars, 2-hydrazinothiazoles, and hydrazine has been reported (525, 531). [Pg.100]

The nitro group increases the acidity of the hydrogen born by the exocyclic nitrogen, and alkylation of 2-nitraminothiazole with diazomethane is possible (87), The formed 2-(A"-methylnitramino)-thiazole also may be obtained from the reaction of 2-nitraminothiazole with dimethylsulfate in basic medium (194). [Pg.112]

Imino-4-thiazolines are far more basic than their isomeric 2-aminothiazoles (see Table VI-1). They react with most electrophDic centers through the exocyclic nitrogen and are easily acylated (37, 477, 706) and sulfonated (652). The reaction of 2-imino-3-methyi-4-thiazoline (378) with a-chloracetic anhydride yields 379 (Scheme 217) (707). This exclusive reactivity of the exocyclic nitrogen precludes the direct synthesis of endocyclic quaternary salts of 2-imino-4-thiazolines. although this class of compounds was prepared recently according to Scheme 218 (493). [Pg.124]

Nucleophilic reactivity of the sulfur atom has received most attention. When neutral or very acidic medium is used, the nucleophilic reactivity occurs through the exocyclic sulfur atom. Kinetic studies (110) measure this nucleophilicity- towards methyl iodide for various 3-methyl-A-4-thiazoline-2-thiones. Rate constants are 200 times greater for these compounds than for the isomeric 2-(methylthio)thiazole. Thus 3-(2-pyridyl)-A-4-thiazoline-2-thione reacts at sulfur with methyl iodide (111). Methyl substitution on the ring doubles the rate constant. This high reactivity at sulfur means that, even when an amino (112, 113) or imino group (114) occupies the 5-position of the ring, alkylation takes place on sulfiu. For the same reason, 2-acetonyi derivatives are sometimes observed as by-products in the heterocyclization reaction of dithiocarba-mates with a-haloketones (115, 116). [Pg.391]

Data are lacking on the mechanisms of these reactions, but knowledge of other series suggests that the first step is attack of the exocyclic sulfur of 66 on the exocyclic sulfur of 67 converted into an electrophilic center by catalysis (Scheme 31). [Pg.393]

Nucleophilic reactivity of exocyclic sulfur appears in acidic medium. 2-AryI thiazolyl sulfones are obtained from the corresponding sulfides by oxidation with HjO- in HOAc at 100°C (272). The same oxidation takes place with alkyl sulfides (203. 214, 273-275) and dithiazolylsulfides (129). However, the same reaction with 2-benzylthio derivatives gives benzylal-cohol and the related A-4-thiazoline-2-thione (169). [Pg.405]

Tautomerism of the A-2-thiazoline-5-thiones has not been investigated intensively. A recent report shows that 2-phenylthiazo e-5-thiols exist in the thiol form in both polar and nonpolar solvents (563). This behavior is in contrast with that of corresponding thiazolones. Addition reactions involve only the exocyclic sulfur atom, and thiazole-5-thiols behave as typical heteroaromatic thiols towards unsaturated systems, giving sulfides (1533) (Scheme 80) (563),... [Pg.417]

Benzo[Z)]furans and indoles do not take part in Diels-Alder reactions but 2-vinyl-benzo[Z)]furan and 2- and 3-vinylindoles give adducts involving the exocyclic double bond. In contrast, the benzo[c]-fused heterocycles function as highly reactive dienes in [4 + 2] cycloaddition reactions. Thus benzo[c]furan, isoindole (benzo[c]pyrrole) and benzo[c]thiophene all yield Diels-Alder adducts (137) with maleic anhydride. Adducts of this type are used to characterize these unstable molecules and in a similar way benzo[c]selenophene, which polymerizes on attempted isolation, was characterized by formation of an adduct with tetracyanoethylene (76JA867). [Pg.67]

With secondary amines such as piperidine or dimethylamine the formal products (169) of cine substitution are obtained with primary amines e.g. /-butylamine), in addition to the displacement product (173), a rearranged product (174) is obtained in which the nitrogen-bearing methyl becomes exocyclic 80CC123). Earlier studies on the reaction of... [Pg.75]


See other pages where Exocyclic reactions is mentioned: [Pg.174]    [Pg.174]    [Pg.187]    [Pg.174]    [Pg.174]    [Pg.187]    [Pg.295]    [Pg.174]    [Pg.174]    [Pg.187]    [Pg.174]    [Pg.174]    [Pg.187]    [Pg.295]    [Pg.282]    [Pg.163]    [Pg.33]    [Pg.38]    [Pg.50]    [Pg.68]    [Pg.126]    [Pg.396]    [Pg.18]    [Pg.116]   


SEARCH



Exocyclic

Exocyclic reactions compounds

Exocyclic reactions cycloadditions

Exocyclic reactions regioselectivity

Reactions at Side Chains and Exocyclic Carbocations

Wittig reaction exocyclic olefin

© 2024 chempedia.info