Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol-type condensations, acid derivatives

Synthesis o( S-amlnoacryiic acids or derivatives from nitriles by aldol type condensation... [Pg.170]

Amino acids and their derivatives undergo a wide range of reactions, e.g. racemization, peptide bond formation, ester hydrolysis, aldol-type condensation, Schiff base formation and redox reactions, which are catalyzed by coordination to a metal centre. A number of reviews are available which cover some of these reactions.48,69,70... [Pg.755]

The Hiyama aminoacrylate synthesis " is the synthesis of alkyl ester of 3-aminoacrylic acids or derivatives by aldol-type condensation of nitriles with ester in the presence of a base such as (i-Pr)2NH. [Pg.124]

The pinwheel shape of a f-butyl propionate derived silylketene acetal (see Section 2.4.2.1) was revealed by a single-crystal X-ray diffraction analysis. Several different catalysts were reported to promote the aldol-type condensation of alkyl enol ethersand silyl enol ethers with aldehydes, acetals and various other electrophiles. In some cases the reaction proceeded with high simple stereoselection. The mechanism of the Lewis acid mediated additions to acetals (see Section 2.4.2.3) was investigated in detail, as well as the uncatalyzed aldol reaction of silyl enol ethers with aldehydes promoted by the hydrophobic effect (see Section 2.4.2.1). [Pg.655]

A stereoselective synthesis of 6-amino acid derivatives by an aldol-type condensation of tin(II) carboxylic thioester enolates with imines has been reported (Scheme 90) the method was used to synthesize an intermediate of the carbapenem antibiotic... [Pg.311]

Aldol-type condensation of an aromatic aldehyde with activated methylarene or phenylacetic acid is a useful reaction for preparing stilbene derivatives. Starting from para-substituted toluenes or para-substituted aromatic aldehydes, one can obtain 4,4 -disubstituted stilbenes. This reaction is relatively simple but has low yield. As an example, condensation of 2,4-dinitrotoluene and 4-nitrophenylacetic acid with aromatic aldehyde was studied [26]. The reaction involves carbanion addition to the carbonyl group. The carbanion is formed by the extraction of proton from the active methylene group of 2,4-dinitrotoluene by the base (usually, piperidine). The carbanion then adds to carbon atoms of the carbonyl group of the aldehyde. The reaction will therefore be facilitated by the ease of both the formation of the... [Pg.3]

We recall that an aldol condensation occurs by attack of a carbanion derived from an aldehyde or ketone on the carbonyl carbon atom of a second molecule of an aldehyde or ketone. The product is a (3-hydroxy carbonyl compound, or an a,P-unsaturated carbonyl dehydration product. Aldol-type condensations also occur when the carbanion is derived from carboxylic acid derivatives. [Pg.781]

ALDOL-TYPE CONDENSATIONS OF ACID DERIVATIONS Knoevenagel Condensation... [Pg.1230]

Aldehydes fiad the most widespread use as chemical iatermediates. The production of acetaldehyde, propionaldehyde, and butyraldehyde as precursors of the corresponding alcohols and acids are examples. The aldehydes of low molecular weight are also condensed in an aldol reaction to form derivatives which are important intermediates for the plasticizer industry (see Plasticizers). As mentioned earlier, 2-ethylhexanol, produced from butyraldehyde, is used in the manufacture of di(2-ethylhexyl) phthalate [117-87-7]. Aldehydes are also used as intermediates for the manufacture of solvents (alcohols and ethers), resins, and dyes. Isobutyraldehyde is used as an intermediate for production of primary solvents and mbber antioxidants (see Antioxidaisits). Fatty aldehydes Cg—used in nearly all perfume types and aromas (see Perfumes). Polymers and copolymers of aldehydes exist and are of commercial significance. [Pg.474]

Formaldehyde condenses with itself in an aldol-type reaction to yield lower hydroxy aldehydes, hydroxy ketones, and other hydroxy compounds the reaction is autocatalytic and is favored by alkaline conditions. Condensation with various compounds gives methylol (—CH2OH) and methylene (=CH2) derivatives. The former are usually produced under alkaline or neutral conditions, the latter under acidic conditions or in the vapor phase. In the presence of alkahes, aldehydes and ketones containing a-hydrogen atoms undergo aldol reactions with formaldehyde to form mono- and polymethylol derivatives. Acetaldehyde and 4 moles of formaldehyde give pentaerythritol (PE) ... [Pg.491]

Aldol and Related Condensations As an elegant extension of the PTC-alkylation reaction, quaternary ammonium catalysts have been efficiently utilized in asymmetric aldol (Scheme 11.17a)" and nitroaldol reactions (Scheme ll.lTb) for the constmction of optically active p-hydroxy-a-amino acids. In most cases, Mukaiyama-aldol-type reactions were performed, in which the coupling of sUyl enol ethers with aldehydes was catalyzed by chiral ammonium fluoride salts, thus avoiding the need of additional bases, and allowing the reaction to be performed under homogeneous conditions. " It is important to note that salts derived from cinchona alkaloids provided preferentially iyw-diastereomers, while Maruoka s catalysts afforded awh-diastereomers. [Pg.338]

The same type of reaction has been applied to the preparation of 1,2-dihydroquinoline-3- and 277-l-benzothiopyran-3-carboxylic acid derivatives (equation 38) via a magnesium amide-induced sequential conjugate addition-aldol condensation reaction between 2-(alkylamino)phenylketones or 2-mercaptobenzophenones . [Pg.453]

CAB 2, R = H, derived from monoacyloxytartaric acid and diborane is also an excellent catalyst (20 mol %) for the Mukaiyama condensation of simple enol silyl ethers of achiral ketones with various aldehydes. The reactivity of aldol-type reactions can, furthermore, be improved, without reducing the enantioselectivity, by use of 10-20 mol % of 2, R = 3,5-(CF3)2C6H3, prepared from 3,5-bis(trifluoromethyl)phenyl-boronic acid and a chiral tartaric acid derivative. The enantioselectivity could also be improved, without reducing the chemical yield, by using 20 mol % 2, R = o-PhOCgH4, prepared from o-phenoxyphenylboronic acid and chiral tartaric acid derivative. The CAB 2-catalyzed aldol process enables the formation of adducts in a highly diastereo- and enantioselective manner (up to 99 % ee) under mild reaction conditions [47a,c]. These reactions are catalytic, and the chiral source is recoverable and re-usable (Eq. 62). [Pg.172]

On the basis of these results, we have developed the first method for the enantiose-lective synthesis of chiral /3-amino acid esters from achiral imines and ketene silyl acetals using BLA 28. The enantioselectivity of the aldol-type reaction is dramatically increased by using sterically bulky A-substituents. Condensation of the imine derived from benzhydrylamine occurs with high enantioselectivity (90 % ee) (Eq. 80). Furthermore, the best result (96 % ee) is achieved by use of a 1 1 (v/v) mixture of toluene and dichloromethane as solvents. Thus, excellent enantioselectivity (95 % ee or better) has been achieved in reactions of aromatic aldehyde-derived imines... [Pg.183]

Largely stimulated by the synthesis of 3-lactam antibiotics, there have been widespread investigations into the stereochemical aspects of imine condensations, mainly involving reactions of enolates of carboxylic acid derivatives or silyl ketene acetals. In analogy to the aldol condensation, stereoselectivity of imine condensations will be discussed in terms of two types in this chapter (i) simple dia-stereoselectivity or syn-anti selectivity, when the two reactants are each prochiral (equation 12) and (ii) diastereofacial selectivity, when a new chiral center is formed in the presence of a pre-existing chiral center in one of the reactants (e.g. equation 13). The term asymmetric induction may be used synonymously with diastereofacial selectivity when one of the chiral reactants is optically active. For a more explicit explanation of these terms, see Heathcock s review on the aldol condensation. ... [Pg.915]

Condensation reactions of simple carboxylic acids with imines are of intense interest because of their applications to 3-lactam synthesis. Activation of the carboxylic acid derivative is accomplished by preforming the enolate in situ or by using a silyl ketene acetal derivative with Lewis acid catalysis. The first example of an enolate-imine condensation of this type can be attributed to Gillman and Speeter, who in 1943 reported the synthesis of 3-lactams from Reformatsky reagents and Schiff bases. Subsequently, other workers have investigated the mechanism and syn-anti selectivity of this reaction. A review of these studies by Evans et al. covering work through 1980 has appeared in their review, Stereoselective Aldol Condensations . ... [Pg.917]

The synthesis of carboxylate-substituted imidazoline derivatives has previously been accomplished by the condensation of presynthesized 1,2-diamines with amides, or through the transition metal catalyzed aldol-type reaction between isocyanates and imines (4,5). We have recently communicated an alternative palladium catalyzed route to synthesize a new class of imidazoline carboxylates, utilizing acid chloride, imines and carbon monoxide as starting materials (see Table 1)... [Pg.503]


See other pages where Aldol-type condensations, acid derivatives is mentioned: [Pg.53]    [Pg.265]    [Pg.2]    [Pg.251]    [Pg.580]    [Pg.465]    [Pg.630]    [Pg.165]    [Pg.730]    [Pg.501]    [Pg.142]    [Pg.91]    [Pg.682]    [Pg.111]    [Pg.139]    [Pg.107]    [Pg.1221]    [Pg.31]    [Pg.115]    [Pg.664]    [Pg.1344]    [Pg.65]   


SEARCH



Acidity, types

Acids types

Aldol condensate

Aldol condensation

Aldol-type condensations

Condensation types

Condensations aldol condensation

Condensers, types

Derivatives, Condensation

© 2024 chempedia.info