Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic aldehydes Substituted

In contrast to wild-type BFD, BAL accepts aromatic aldehydes substituted in the ortho position as well. Only a few aromatic aldehydes, such as pyridine 3- and 4-carbaldehyde as well as sterically exceedingly demanding aldehydes, resulted either in very low yields or in no benzoin condensation at all [62]. Moreover, mono- and dimethoxyacetaldehyde are good substrates for BAL, leading to highly functionalized enantiopure hydroxypropiophenone derivatives (Scheme 2.2.7.22) [63]. [Pg.405]

In the nucleophilic addition reactions of amines to substituted aromatic aldehydes where acid catalysis is required, the use of EAN seems to be convenient. The EAN can take part in an acid-base equilibrium with the aromatic aldehydes substituted by electron-withdrawing groups. The imine products from the selected aldehydes could be obtained, confirming the dual behaviour of EAN as Brbnsted acid and potential nucleophile in these type of processes (Fig. 13.7). [Pg.358]

The Gattermann-Koch synthesis is suitable for the preparation of simple aromatic aldehydes from ben2ene and its substituted derivatives, as well as from polycychc aromatics. The para isomers are produced preferentially. Aromatics with meta-directing substituents cannot be formylated (108). [Pg.559]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

A variation involves the reaction of benzylamines with glyoxal hemiacetal (168). Cyclization of the intermediate (35) with sulfuric acid produces the same isoquinoline as that obtained from the Schiff base derived from an aromatic aldehyde and aminoacetal. This method has proved especially useful for the synthesis of 1-substituted isoquinolines. [Pg.397]

This synthesis works especially well with cyclohexanone giving 80% oxaziridines with either chloramine (77JPR195) or (V-chloromethylamine. Simple aliphatic ketones and ortho substituted aromatic aldehydes yield 30-50% oxaziridines with N-chloromethylamine (65CB2516). [Pg.229]

Boron triiodide rapidly cleaves methyl ethers of o-, m-, or / -substituted aromatic aldehydes (0°, 25° 0.5-5 min 40-86% yield)." BI3 complexed with A/,A-diethylaniline is similarly effective, but benzyl ethers are converted to the iodide... [Pg.252]

Compound 40 has not yet been synthesized. However, there is a large body of synthetic data for nucleophilic substitution reactions with derivatives of 41 [synthesized from aliphatic and aromatic aldehydes, pyridine, and trimethylsilyl triflate (92S577)]. All of these experimental results reveal that the exclusive preference of pathway b is the most important feature of 41 (and also presumably of 40). [Pg.198]

Here a typical property of three-membered rings wdth two hetero atoms is shown and this property is also found in the diaziridines. Only with the oxaziranes which are substituted by aryl groups in the 3-position does the hydrolysis by acids occur according to Eq. (14) with formation of an aromatic aldehyde and alkyl hydroxylamine. [Pg.93]

Most oxaziranes withstand temperatures of 100 C for a short time, e.g., on distillation. At higher temperatures isomerization and decomposition occur. Oxaziranes derived from aromatic aldehydes are here again differentiated from the alkyl-substituted oxaziranes. [Pg.99]

The reaction of electron-rich aromatic compounds with yV,A -dimethylformamide 2 and phosphorus oxychloride to yield an aromatic aldehyde—e.g. 3 from the substituted benzene 1—is called the Vilsmeier reaction or sometimes the Vilsmeier-Haack reaction. It belongs to a class of formylation reactions that are each of limited scope (see also Gattermann reaction). [Pg.280]

The initial product 5 of the electrophilic aromatic substitution step is unstable and easily hydrolyzes to yield the aromatic aldehyde 3 as the final reaction product. With mo o-substituted aromatic substrates the para-substituted aldehyde is formed preferentially. [Pg.281]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

Through the use of a tin(iv) enolate with benzaldehyde it was possible to generate the anti A diastereomer 47 with high selectivity (Entry 5). With tin(n) etiolates a highly substituent-dependent outcome was observed. Low selectivities resulted with para-substituted aromatic aldehydes, but good selectivities were observed for ortho-substituted aromatic aldehydes (Entries 7-9). Simultaneous re-... [Pg.16]

A variety of such ternary catalytic systems has been developed for diastereoselective carbon-carbon bond formations (Table). A Cp-substituted vanadium catalyst is superior to the unsubstituted one,3 whereas a reduced species generated from VOCl3 and a co-reductant is an excellent catalyst for the reductive coupling of aromatic aldehydes.4 A trinuclear complex derived from Cp2TiCl2 and MgBr2 is similarly effective for /-selective pinacol coupling.5 The observed /-selectivity may be explained by minimization of steric effects through anti-orientation of the bulky substituents in the intermediate. [Pg.15]

The synthesis of functionahzed tetrahydrocarbazoles can be promoted by microwave irradiation [84], The organocatalytic four-component reaction of a solution of 2-substituted indole, aromatic aldehyde (2 equiv) and Mel-drum s acid in benzene in the presence of DL-proline proceeds when heated under Dean-Stark conditions for 5 min in a single-mode microwave reactor to give the tetrahydrocarbazole product as a mixture of diastereoisomers (Scheme 24). [Pg.48]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

Many known color reactions involve electrophilic substitution at an electron-rich aromatic or heteroaromatic (cf. 4-(dimethylamino)-benzaldehyde - acid reagents and vanillin reagents ). Here aliphatic or aromatic aldehydes react in acid medium to yield polymethyne cations which are intensely colored di- or triarylcarbenium ions [4, 10]. [Pg.39]

The Knoevenagel reaction between o-hydroxyaryl aldehydes and ketones and substituted acetonitriles affords high yields of 3-substituted coumarins in aqueous alkaline media <96H(43)1257>, whilst 4-hydroxycoumarins have been elaborated to pyrano [3,2-c]benzopyran-5-ones by reaction with aromatic aldehydes and malononitiile <96P148>. The imine (10) resulting from the complex reaction of o-hydroxyacetophenone with malononitrile undergoes a 1,5-tautomeric shift in solution <96JCS(P1)1067>. [Pg.296]

Tu found that when aniline was used instead of the secondary amine under otherwise identical conditions 2,4-diphenyl-substituted quinoline was formed in 56% yield. Phenylacetylene and aniline were initially used as model substrates for exploring the aldehyde scope. With aromatic aldehydes the reactions proceeded smoothly to give the corresponding quinolines in moderate to good yields. A heteroaromatic aldehyde is also compatible with this transformation and the expected product was afforded in 83% yield. However, when ahphatic aldehydes were subjected to the reaction, the desired product was obtained in low yield (Scheme 19) [34]. [Pg.14]

Reversed micelles have also shown to be useful not only in bioconversions, but also in organic synthesis. Shield et al. (1986) have reviewed this subject and brought out its advantages in peptide synthesis, oxidation or reduction of steroids, selective oxidation of isomeric mixtures of aromatics, etc. In the oxidation of aromatic aldehydes to carboxylic acids with enzymes hosted in reverse micelles, the ortho substituted substrates react much more slowly than other isomers. [Pg.149]

With para-substituted aromatic aldehydes, electronic factors had little effect on the ee (52-64%), and similar ee s were obtained for the other substrates [25]. [Pg.160]

Scheme 3.58 2-Amino-substituted tert-butylsulfinylferrocene ligands for additions of ZnEt2 to aromatic aldehydes. Scheme 3.58 2-Amino-substituted tert-butylsulfinylferrocene ligands for additions of ZnEt2 to aromatic aldehydes.
Entry 6 uses diisopropoxytitanium with racemic BINOL as the catalyst. Entry 7 shows the use of (CH3)2A1C1 with a highly substituted aromatic aldehyde. The product... [Pg.877]

In place of aromatic aldehyde, a hetaryl aldehyde such as 2-pyridinecar-boxaldehyde can also be used.84 If a hetaryl aldehyde such as 4-pyridinecar-boxaldehyde and a hetaryl nucleophile such as indole 61 are used, a trihetarylmethane of type 62 is formed91 (Eq. 8). The reaction normally occurs at the 3-position of indole. However, when the 3-position is substituted, the reaction occurs at the 2-position. Use of two different indoles... [Pg.144]


See other pages where Aromatic aldehydes Substituted is mentioned: [Pg.365]    [Pg.209]    [Pg.365]    [Pg.365]    [Pg.209]    [Pg.365]    [Pg.438]    [Pg.181]    [Pg.50]    [Pg.459]    [Pg.870]    [Pg.253]    [Pg.163]    [Pg.17]    [Pg.53]    [Pg.101]    [Pg.102]    [Pg.242]    [Pg.285]    [Pg.1230]    [Pg.280]    [Pg.141]    [Pg.199]    [Pg.139]    [Pg.18]    [Pg.257]    [Pg.100]   
See also in sourсe #XX -- [ Pg.658 ]




SEARCH



Aldehydes substitution

Aromatic aldehydes

Aromatics Aldehydes

© 2024 chempedia.info