Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis Aldol condensation

A regioselective aldol condensation described by Biichi succeeds for sterical reasons (G. Biichi, 1968). If one treats the diaidehyde given below with acid, both possible enols are probably formed in a reversible reaaion. Only compound A, however, is found as a product, since in B the interaction between the enol and ester groups which are in the same plane hinders the cyclization. BOchi used acid catalysis instead of the usual base catalysis. This is often advisable, when sterical hindrance may be important. It works, because the addition of a proton or a Lewis acid to a carbonyl oxygen acidifies the neighbouring CH-bonds. [Pg.55]

Exactly the same distinction can be made over catalysis by bases as was made above for acids. Thus in specific base catalysis the reaction rate is again found to be oc pH, this time rising as the pH rises, i.e. is oc [eOH]. Thus in the reversal of an aldol condensation (cf. p. 224) it is found that,... [Pg.75]

Annual Volume 71 contains 30 checked and edited experimental procedures that illustrate important new synthetic methods or describe the preparation of particularly useful chemicals. This compilation begins with procedures exemplifying three important methods for preparing enantiomerically pure substances by asymmetric catalysis. The preparation of (R)-(-)-METHYL 3-HYDROXYBUTANOATE details the convenient preparation of a BINAP-ruthenium catalyst that is broadly useful for the asymmetric reduction of p-ketoesters. Catalysis of the carbonyl ene reaction by a chiral Lewis acid, in this case a binapthol-derived titanium catalyst, is illustrated in the preparation of METHYL (2R)-2-HYDROXY-4-PHENYL-4-PENTENOATE. The enantiomerically pure diamines, (1 R,2R)-(+)- AND (1S,2S)-(-)-1,2-DIPHENYL-1,2-ETHYLENEDIAMINE, are useful for a variety of asymmetric transformations hydrogenations, Michael additions, osmylations, epoxidations, allylations, aldol condensations and Diels-Alder reactions. Promotion of the Diels-Alder reaction with a diaminoalane derived from the (S,S)-diamine is demonstrated in the synthesis of (1S,endo)-3-(BICYCLO[2.2.1]HEPT-5-EN-2-YLCARBONYL)-2-OXAZOLIDINONE. [Pg.266]

In almost the same manner, tandem hydroformylation/aldol condensation aldol condensation of ketoolefins, such as p,y-unsaturated ketones, gives a single cyclization product under acid catalysis. Similar to the stepwise reaction, the in situ generated aldehyde preferentially acts as the electrophilic carbonyl component, while the ketone acts as the nucleophilic enol to form the five-membered ring product. Subsequent dehydration and hydrogenation of the resulting enone readily occurs under the reductive reaction conditions used (Scheme 30) [84],... [Pg.94]

Circulation flow system, measurement of reaction rate, 28 175-178 Clausius-Clapeyron equation, 38 171 Clay see also specific types color tests, 27 101 compensation behavior, 26 304-307 minerals, ship-in-bottle synthesis, metal clusters, 38 368-379 organic syntheses on, 38 264-279 active sites on montmorillonite for aldol reaction, 38 268-269 aldol condensation of enolsilanes with aldehydes and acetals, 38 265-273 Al-Mont acid strength, 38 270-271, 273 comparison of catalysis between Al-Mont and trifluorometfaanesulfonic acid, 38 269-270... [Pg.76]

In principle, stereoselective aldol condensations can be carried out under two distinct sets of conditions. Under the influence of acid catalysis, stabilized enol derivatives of defined geometry (M = SiMea,... [Pg.4]

Another reaction type for which EGA catalysis has been thoroughly explored is the reaction between organo-silicon nucleophiles and acetals or unprotected aldehydes and ketones [31-33]. The reaction types are aldol condensation, allyla-tion, cyanation, and hydride reductions depending on which of the nucleophiles (16) to (20) is used. [Pg.460]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

Trost s group reported direct catalytic enantioselective aldol reaction of unmodified ketones using dinuclear Zn complex 21 [Eq. (13.10)]. This reaction is noteworthy because products from linear aliphatic aldehydes were also obtained in reasonable chemical yields and enantioselectivity, in addition to secondary and tertiary alkyl-substituted aldehydes. Primary alkyl-substituted aldehydes are normally problematic substrates for direct aldol reaction because self-aldol condensation of the aldehydes complicates the reaction. Bifunctional Zn catalysis 22 was proposed, in which one Zn atom acts as a Lewis acid to activate an aldehyde and the other Zn-alkoxide acts as a Bronsted base to generate a Zn-enolate. The... [Pg.389]

The activated Ba(OH)2 was used as a basic catalyst for the Claisen-Schmidt (CS) condensation of a variety of ketones and aromatic aldehydes (288). The reactions were performed in ethanol as solvent at reflux temperature. Excellent yields of the condensation products were obtained (80-100%) within 1 h in a batch reactor. Reaction rates and yields were generally higher than those reported for alkali metal hydroxides as catalysts. Neither the Cannizaro reaction nor self-aldol condensation of the ketone was observed, a result that was attributed to the catalyst s being more nucleophilic than basic. Thus, better selectivity to the condensation product was observed than in homogeneous catalysis under similar conditions. It was found that the reaction takes place on the catalyst surface, and when the reactants were small ketones, the rate-determining step was found to be the surface reaction, whereas with sterically hindered ketones the adsorption process was rate determining. [Pg.289]

In general, the product ratio of a mixed aldol condensation will depend upon the individual reaction rates. Most ketones show a pattern similar to butanone in reactions with aromatic aldehydes. Base catalysis favors reaction at a methyl position over a methylene group, whereas acid catalysis gives the opposite preference. [Pg.62]

Polyquinolines (PQ) are obtained by the Friedlander reaction of a bis-o-aminoaromatic aldehyde (or ketone) with an aromatic hisketomethylene reactant [Concilio et al., 2001 Stille, 1981]. The quinoline ring is formed hy a combination of an aldol condensation and imine formation (Eq. 2-221). Polymerization is carried out at 135°C in m-cresol with poly (phosphoric acid) as the catalyst. The reaction also proceeds under base catalysis, but there... [Pg.162]

Aldol condensation reaction may be either acid or base catalysed. However, base catalysis is more common. The product of this reaction is called an aldol, i.e. aid from aldehyde and ol from alcohol. The product is either a P-hydroxyaldehyde or P-hydroxyketone, depending on the starting material. For example, two acetaldehyde (ethanal) molecules condense together in the presence of an aqueous base (NaOH), to produce 3-hydroxybutanal (a P-hydroxyaldehyde). [Pg.222]

Catalysis in reaction systems with undissolved substrates and products is not restricted to biocatalysis. High yields in sobd-state synthesis, sohd-to-sohd reactions, and solvent-free systems have also been reported for aldol condensation, Baeyer-Villiger oxidation, oxidative coupling of naphthols, and condensation of amines and aldehydes [1, 2]. [Pg.279]

In general, any molecule capable of producing an enolate ion and also possessing two ligands for chelation of a metal ion will exhibit such a catalysis. For example, it has been reported (47) that magnesium ion catalyzes the aldol condensation of pyruvate with acetaldehyde, presumably through a mechanism such as ... [Pg.37]

Aldol products do not have to come from an aldol condensation. In another example of catalysis by a small organic molecule, Jeffrey Bode of UC Santa Barbara reports (J- Am. Chem. Soc. 2004,126, 8126) that the thioazolium salt 7 effects the rearrangement of an epoxy aldehyde such as 6 to the aldol product 8. This is a net oxidation of the aldehyde, and reduction of the epoxide. As epoxy aldehydes such as 6 are readily available by Sharpless asymmetric epoxidation, this should be a general route to enantiomerically-aldol products. The rearrangement also works with an aziridine aldehyde such as 9, to give the ff-amino ester 10. [Pg.62]

The effect of the basicity of aldol condensation catalysts on their activity was thoroughly investigated by Malinowski et al. [372—379]. The observed linear dependence of the rate coefficients of several condensation reactions on the amount of sodium hydroxide contained in silica gel (Figs. 12 and 13) supported the view that the basic properties of this type of catalyst were actually the cause of its catalytic activity, though the alkali-free catalyst was not completely inactive. The amphoteric nature of the catalysis by silica gel, which can act also as an acid catalyst, was demonstrated [380]. By a stepwise addition of sodium acetate to a HN03-pretreated silica gel catalyst the original activity for acetaldehyde self-condensation was decreased to a minimum (when an equivalent amount of the base was added) by further addition of sodium acetate, the activity increased again because of the transition to a base... [Pg.340]

A further demonstration of the Lewis acidity of Os(III) is the aldol condensation reaction of [Os(NH3)5( j1-acetone)]3+, to form the diacetone alcohol complex (67,90). The catalysis of this reaction can occur in one of two ways. Either Os(III) catalyzes the deprotonation of a methyl group of the bound acetone ligand to produce a nucleophile for attack at a second acetone ligand, or the Os(III) center polarizes the C=0 bond of... [Pg.346]

One of the most spectacular and useful template reactions is the Curtis reaction , in which a new chelate ring is formed as the result of an aldol condensation between a methylene ketone or inline and an imine salt. The initial example of this reaction was the formation of a macrocyclic nickel(II) complex from tris(l,2-diaminoethane)nickel(II) perchlorate and acetone (equation 53).182 The reaction has been developed by Curtis and numerous other workers and has been reviewed.183 In mechanistic terms there is some circumstantial evidence to suggest that the nucleophile is an uncoordinated aoetonyl carbanion which adds to a coordinated imine to yield a coordinated amino ketone (equation 54). If such a mechanism operates then the template effect is largely, if not wholly, thermodynamic in nature, as described for imine formation. Such a view is supported by the fact that the free macrocycle salts can be produced by acid catalysis alone. However, this fact does not... [Pg.449]

Support-bound carbonyl compounds can be converted into alcohols by treatment with suitable carbon nucleophiles. Aldehydes react readily with ketones or other C,H-acidic compounds under acid- or base-catalysis to yield the products of aldol addition (Table 7.2). Some types of C,H-acidic compound, such as 1,3-dicarbonyl compounds, can give the products of aldol condensation directly (Section 5.2.2.2). [Pg.215]

The rapid spontaneous mutarotation of glucose-6-phosphate has been shown to result from an intramolecular catalysis of the reaction by the phosphate group at carbon 6 (81). The cleavage of glucose into three carbon fragments, which is essentially a reversal of the aldol condensation reaction, requires the ketohexose as substrate. The necessary isomerization reaction to form the ketohexose then uses the open-chain form intermediate of the mutarotation reaction. Salas et al. (80) have speculated that the enhanced mutarotation of glucose-6-phosphate may thus have been the key requirement which led to the evolution of the phosphorolytic pathway for glucose metabolism. [Pg.297]

Aldol condensation. With aldehydes, successful with either acid or base catalysis. m With ketones, conditions (strong acid or strong base catalysis) under which dehydration occurs are usually used to shift equilibrium toward the product.. ... [Pg.455]

A much more generally useful process was developed by Robinson to prepare cyclohexenones from ketones and methyl vinyl ketone or its derivatives. Again, because good compilations of the Robinson annulation exist,8 only a few examples are given here. The first step of this process, the Michael addition, is carried out by normal base catalysis, while the second step, the aldol condensation, is best accomplished by the use of a secondary amine to form the enamine of the acyclic ketone, which then cyclizes... [Pg.6]

Very recently the group of Resmini described the development of imprinted microgels mimicking a class I aldolase in the catalysis of the aldol condensation between 4-nitrobenzaldehyde and acetone [79]. They prepared highly crosslinked microgels (80 mol%) based on /V,/V -methyIenebisaery 1 amide as the crosslinker and containing as catalytically active monomer a proline derivative (Fig. 5). [Pg.44]


See other pages where Catalysis Aldol condensation is mentioned: [Pg.84]    [Pg.300]    [Pg.79]    [Pg.363]    [Pg.190]    [Pg.93]    [Pg.349]    [Pg.334]    [Pg.264]    [Pg.173]    [Pg.23]    [Pg.137]    [Pg.123]    [Pg.845]    [Pg.159]    [Pg.98]   


SEARCH



Aldol condensate

Aldol condensation

Aldol condensation aldolase catalysis

Aldol condensations metal catalysis

Boric acid catalysis of aldol condensation

Boron oxide catalysis of aldol condensation

Catalysis condensation

Catalysis of aldol condensation

Condensations aldol condensation

© 2024 chempedia.info