Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol acetaldehydes

When a mixture of aniline, hydrochloric acid and acetaldehyde is heated (in the absence of an oxidising agent), a vigorous reaction occurs with the pro duction of quinaldine. In these circumstances, the main reactions are undoubtedly, (i) the acetaldehyde undergoes the aldol condensation, and the... [Pg.300]

Acetaldehyde (and other aldehydes containing at least one hydrogen atom in the a position) when treated with a small quantity of dilute sodium hydr oxide solution or other basic catalyst gives a good yield of aldol (p hydroxy-n-but3Taldehyde) (I), which readily loses water, either by heating the isolated aldol alone or with a trace of mineral acid, to form crotonaldehyde (II) ... [Pg.351]

With concentrated alkali, a resin is formed from repeated aldol condensations between aldol, crotonaldehyde and acetaldehyde. A similar condensation occurs with acetone (b.p. 56°), but the equilibrium mixture contains only a few per cent, of diacetone alcohol (III), b.p. 166° ... [Pg.352]

Acetaldehyde condenses in the presence of a little sodium sulphite or sodium hydroxide solution to aldol. The latter ehminates water upon distUlation at atmospheric pressure, but more efficiently in the presence of a trace of iodine, which acts as a catalyst, to yield crotonaldehyde ... [Pg.460]

The selective intermolecular addition of two different ketones or aldehydes can sometimes be achieved without protection of the enol, because different carbonyl compounds behave differently. For example, attempts to condense acetaldehyde with benzophenone fail. Only self-condensation of acetaldehyde is observed, because the carbonyl group of benzophenone is not sufficiently electrophilic. With acetone instead of benzophenone only fi-hydroxyketones are formed in good yield, if the aldehyde is slowly added to the basic ketone solution. Aldols are not produced. This result can be generalized in the following way aldehydes have more reactive carbonyl groups than ketones, but enolates from ketones have a more nucleophilic carbon atom than enolates from aldehydes (G. Wittig, 1968). [Pg.56]

Mixed aldol condensations can be effective only if we limit the number of reaction pos sibilities It would not be useful for example to treat a solution of acetaldehyde and propanal with base A mixture of four aldol addition products forms under these condi tions Two of the products are those of self addition... [Pg.774]

The base-catalyzed reaction of acetaldehyde with excess formaldehyde [50-00-0] is the commercial route to pentaerythritol [115-77-5]. The aldol condensation of three moles of formaldehyde with one mole of acetaldehyde is foUowed by a crossed Cannizzaro reaction between pentaerythrose, the intermediate product, and formaldehyde to give pentaerythritol (57). The process proceeds to completion without isolation of the intermediate. Pentaerythrose [3818-32-4] has also been made by condensing acetaldehyde and formaldehyde at 45°C using magnesium oxide as a catalyst (58). The vapor-phase reaction of acetaldehyde and formaldehyde at 475°C over a catalyst composed of lanthanum oxide on siHca gel gives acrolein [107-02-8] (59). [Pg.50]

Mercaptals, CH2CH(SR)2, are formed in a like manner by the addition of mercaptans. The formation of acetals by noncatalytic vapor-phase reactions of acetaldehyde and various alcohols at 35°C has been reported (67). Butadiene [106-99-0] can be made by the reaction of acetaldehyde and ethyl alcohol at temperatures above 300°C over a tantala—siUca catalyst (68). Aldol and crotonaldehyde are beheved to be intermediates. Butyl acetate [123-86-4] has been prepared by the catalytic reaction of acetaldehyde with 1-butanol [71-36-3] at 300°C (69). [Pg.51]

Reaction of one mole of acetaldehyde and excess phenol in the presence of a mineral acid catalyst gives l,l-bis(p-hydroxyphenyl)ethane [2081-08-5], acid catalysts, acetaldehyde, and three moles or less of phenol yield soluble resins. Hardenable resins are difficult to produce by alkaline condensation of acetaldehyde and phenol because the acetaldehyde tends to undergo aldol condensation and self-resinification (see Phenolic resins). [Pg.51]

The -butyraldehyde may be obtained from acetaldehyde [75-07-0] by aldol addition followed by hydrogenation, or from propylene by the 0x0 process. This latter process is predominantly favored (Eig. 7). [Pg.459]

Pentaerythritol is produced by reaction of formaldehyde [50-00-0] and acetaldehyde [75-07-0] in the presence of a basic catalyst, generally an alkah or alkaline-earth hydroxide. Reaction proceeds by aldol addition to the carbon adjacent to the hydroxyl on the acetaldehyde. The pentaerythrose [3818-32-4] so produced is converted to pentaerythritol by a crossed Cannizzaro reaction using formaldehyde. All reaction steps are reversible except the last, which allows completion of the reaction and high yield industrial production. [Pg.465]

The name aldol was introduced by Wurt2 in 1872 to describe the product resulting from this acid-cataly2ed reaction of acetaldehyde. The addition will occur with base catalysis as well. [Pg.471]

Aldehydes fiad the most widespread use as chemical iatermediates. The production of acetaldehyde, propionaldehyde, and butyraldehyde as precursors of the corresponding alcohols and acids are examples. The aldehydes of low molecular weight are also condensed in an aldol reaction to form derivatives which are important intermediates for the plasticizer industry (see Plasticizers). As mentioned earlier, 2-ethylhexanol, produced from butyraldehyde, is used in the manufacture of di(2-ethylhexyl) phthalate [117-87-7]. Aldehydes are also used as intermediates for the manufacture of solvents (alcohols and ethers), resins, and dyes. Isobutyraldehyde is used as an intermediate for production of primary solvents and mbber antioxidants (see Antioxidaisits). Fatty aldehydes Cg—used in nearly all perfume types and aromas (see Perfumes). Polymers and copolymers of aldehydes exist and are of commercial significance. [Pg.474]

Formaldehyde condenses with itself in an aldol-type reaction to yield lower hydroxy aldehydes, hydroxy ketones, and other hydroxy compounds the reaction is autocatalytic and is favored by alkaline conditions. Condensation with various compounds gives methylol (—CH2OH) and methylene (=CH2) derivatives. The former are usually produced under alkaline or neutral conditions, the latter under acidic conditions or in the vapor phase. In the presence of alkahes, aldehydes and ketones containing a-hydrogen atoms undergo aldol reactions with formaldehyde to form mono- and polymethylol derivatives. Acetaldehyde and 4 moles of formaldehyde give pentaerythritol (PE) ... [Pg.491]

Examples include acetaldehyde, CH CHO paraldehyde, (CH CHO) glyoxal, OCH—CHO and furfural. The reaction is usually kept on the acid side to minimize aldol formation. Furfural resins, however, are prepared with alkaline catalysts because furfural self-condenses under acid conditions to form a gel. [Pg.293]

In E. coli GTP cyclohydrolase catalyzes the conversion of GTP (33) into 7,8-dihydroneoptetin triphosphate (34) via a three-step sequence. Hydrolysis of the triphosphate group of (34) is achieved by a nonspecific pyrophosphatase to afford dihydroneopterin (35) (65). The free alcohol (36) is obtained by the removal of residual phosphate by an unknown phosphomonoesterase. The dihydroneoptetin undergoes a retro-aldol reaction with the elimination of a hydroxy acetaldehyde moiety. Addition of a pyrophosphate group affords hydroxymethyl-7,8-dihydroptetin pyrophosphate (37). Dihydropteroate synthase catalyzes the condensation of hydroxymethyl-7,8-dihydropteroate pyrophosphate with PABA to furnish 7,8-dihydropteroate (38). Finally, L-glutamic acid is condensed with 7,8-dihydropteroate in the presence of dihydrofolate synthetase. [Pg.41]

Manufacture. Cinnamaldehyde is routinely produced by the base-cataly2ed aldol addition of ben2aldehyde /7(9(9-with acetaldehyde [75-07-0], a procedure which was first estabUshed in the nineteenth century (31). Formation of the (H)-isomer is favored by the transition-state geometry associated with the elimination of water from the intermediate. The commercial process is carried out in the presence of a dilute sodium hydroxide solution (ca 0.5—2.0%) with at least two equivalents of ben2aldehyde and slow addition of the acetaldehyde over the reaction period (32). [Pg.175]

It is also possible to carry out the aldol condensation under acidic conditions. The reactive nucleophile is then the enol. The mechanism, as established in detail for acetaldehyde, involves nucleophilic attack of the enol on the protonated aldehyde. [Pg.469]

The dihydropyrones are not produced directly in the initial BINOL-titanium(IV)-cat-alyzed reaction. The major product at this stage is the Mukaiyama aldol product which is subsequently cyclized by treatment with TFA [19fj. The formal cycloaddition product 3d (97% ee) obtained from a-(benzyloxy)acetaldehyde is an important intermediate for compactin and mevinolin. Scheme 4.13 outlines how the structural subunit 13 is available in three steps via this cycloaddition approach [19 fj. [Pg.161]

An alternative route for n-hutanol is through the aldol condensation of acetaldehyde (Chapter 7). [Pg.233]

The fourth and last fundamental reaction of carbonyl groups, carbonyl condensation, lakes place when two carbonyl compounds react with each other. When acetaldehyde is treated with base, for instance, two molecules combine to yield the hydroxy aldehyde product known as aldol aidehyde + alcoho/) ... [Pg.693]

Aldehydes and ketones with an a hydrogen atom undergo a base-catalyzed carbonyl condensation reaction called the aldol reaction. For example, treatment of acetaldehyde with a base such as sodium ethoxide or sodium hydroxide in a protic solvent leads to rapid and reversible formation of 3-hydroxybutanal, known commonly as aldol (aidehyde + alcohol), hence the general name of the reaction. [Pg.878]

What is the structure of the enone obtained from aldol condensation of acetaldehyde ... [Pg.883]

In general, a mixed aldol reaction between two similar aldehyde or ketone partners leads to a mixture of four possible products. For example, base treatment of a mixture of acetaldehyde and propanal gives a complex product mixture containing two "symmetrical" aldol products and two "mixed" aldol products. Clearly, such a reaction is of no practical value. [Pg.885]

When 2-lithio-2-(trimethylsilyl)-l,3-dithiane,9 formed by deprotonation of 9 with an alkyllithium base, is combined with iodide 8, the desired carbon-carbon bond forming reaction takes place smoothly and gives intermediate 7 in 70-80% yield (Scheme 2). Treatment of 7 with lithium diisopropylamide (LDA) results in the formation of a lactam enolate which is subsequently employed in an intermolecular aldol condensation with acetaldehyde (6). The union of intermediates 6 and 7 in this manner provides a 1 1 mixture of diastereomeric trans aldol adducts 16 and 17, epimeric at C-8, in 97 % total yield. Although stereochemical assignments could be made for both aldol isomers, the development of an alternative, more stereoselective route for the synthesis of the desired aldol adduct (16) was pursued. Thus, enolization of /Mactam 7 with LDA, as before, followed by acylation of the lactam enolate carbon atom with A-acetylimidazole, provides intermediate 18 in 82% yield. Alternatively, intermediate 18 could be prepared in 88% yield, through oxidation of the 1 1 mixture of diastereomeric aldol adducts 16 and 17 with trifluoroacetic anhydride (TFAA) in... [Pg.253]

The synthesis of the polyol glycoside subunit 7 commences with an asymmetric aldol condensation between the boron enolate derived from imide 21 and a-(benzyloxy)acetaldehyde (24) to give syn adduct 39 in 87 % yield and in greater than 99 % diastereomeric purity (see Scheme 8a). Treatment of the Weinreb amide,20 derived in one step through transamination of 39, with 2-lithiopropene furnishes enone 23 in an overall yield of 92 %. To accomplish the formation of the syn 1,3-diol, enone 23 is reduced in a chemo- and... [Pg.497]

In contrast, transmetalation of the lithium enolate at —40 C by treatment with one equivalent of copper cyanide generated a species 10b (M = Cu ) that reacted with acetaldehyde to selectively provide a 25 75 mixture of diastereomers 11 and 12 (R = CH3) which are separable by chromatography on alumina. Other diastereomers were not observed. Similar transmetalation of 10a (M = Li0) with excess diethylaluminum chloride, followed by reaction with acetaldehyde, produced a mixture of the same two diastereomers, but with a reversed ratio (80 20). Similar results were obtained upon aldol additions to other aldehydes (see the following table)49. [Pg.548]

Transmetalation of 19 by treatment with two equivalents of diethylaluminum chloride generates the aluminum enolate species 23. The latter reacts with acetaldehyde to produce the stable aluminum aldolates 24 which do not undergo the Peterson elimination23. A protic quench then provides the a-silylated aldol adducts of tentative structures (2 R)-25 and (2 V)-25 with little diastereoselectivity. Other diastereomers are not observed. [Pg.549]

Addition of metalated, enantiomerically pure a-sulfinyl dimethylhydrazones (e.g., 9) to racemic a-chiral aldehydes 10 proceeds with good to excellent diastereo- and enantioselectivi-ty12. Diastereomeric ratios increase with increasing steric demand of the acetaldehyde substituent R1 compared to the methyl group, and each diastereomer is obtained with high enantiomeric excess. In the aldol-lype addition to 2-phenylpropanal, one of the four possible stereoisomers is formed selectively. The relative (syn) and absolute (R.R) configuration is in accord with Cram s and related rules as well as H-NMR data of closely related compounds. [Pg.604]


See other pages where Aldol acetaldehydes is mentioned: [Pg.163]    [Pg.331]    [Pg.460]    [Pg.460]    [Pg.1119]    [Pg.50]    [Pg.466]    [Pg.431]    [Pg.483]    [Pg.10]    [Pg.346]    [Pg.876]    [Pg.199]    [Pg.693]    [Pg.251]    [Pg.621]    [Pg.276]   
See also in sourсe #XX -- [ Pg.798 , Pg.799 ]




SEARCH



Acetaldehyde Aldol condensation

Acetaldehyde aldol addition

Acetaldehyde aldolization

Acetaldehyde aldolization

Acetaldehyde crossed aldol reaction with

Acetaldehyde in aldol reaction

Acetaldehyde, aldol reaction

Acetaldehyde, aldol reaction 13C NMR absorptions

Acetaldehyde, aldol reaction electrostatic potential map

Acetaldehydes aldol reaction donors

Aldol condensation of acetaldehyde

Aldol reactions with acetaldehyde

Aldol, from acetaldehyde

Aldolization of acetaldehyde

© 2024 chempedia.info