Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehyde spectroscopy

Polyester composition can be determined by hydrolytic depolymerization followed by gas chromatography (28) to analyze for monomers, comonomers, oligomers, and other components including side-reaction products (ie, DEG, vinyl groups, aldehydes), plasticizers, and finishes. Mass spectroscopy and infrared spectroscopy can provide valuable composition information, including end group analysis (47,101,102). X-ray fluorescence is commonly used to determine metals content of polymers, from sources including catalysts, delusterants, or tracer materials added for fiber identification purposes (28,102,103). [Pg.332]

An unusual method for the preparation of syndiotactic polybutadiene was reported by The Goodyear Tire Rubber Co. (43) a preformed cobalt-type catalyst prepared under anhydrous conditions was found to polymerize 1,3-butadiene in an emulsion-type recipe to give syndiotactic polybutadienes of various melting points (120—190°C). These polymers were characterized by infrared spectroscopy and nuclear magnetic resonance (44—46). Both the Ube Industries catalyst mentioned previously and the Goodyear catalyst were further modified to control the molecular weight and melting point of syndio-polybutadiene by the addition of various modifiers such as alcohols, nitriles, aldehydes, ketones, ethers, and cyano compounds. [Pg.531]

Paal-Knorr synthesis, 4, 118, 329 Pariser-Parr-Pople approach, 4, 157 PE spectroscopy, 4, 24, 188-189 photoaddition reactions with aliphatic aldehydes and ketones, 4, 232 photochemical reactions, 4, 67, 201-205 with aliphatic carbonyl compounds, 4, 268 with dimethyl acetylenedicarboxylate, 4, 268 Piloty synthesis, 4, 345 Piloty-Robinson synthesis, 4, 110-111 polymers, 273-274, 295, 301, 302 applications, 4, 376 polymethylation, 4, 224 N-protected, 4, 238 palladation, 4, 83 protonation, 4, 46, 47, 206 pyridazine synthesis from, 3, 52 pyridine complexes NMR, 4, 165... [Pg.819]

The concentrations of the different intermediates are determined by the equilibrium constants. The observation of immonium ions [Eq. (5)] in strongly acidic solutions by ultraviolet and NMR spectroscopy also Indicates that these equilibria really exist (23,26). The equilibria in aqueous solutions are of synthetic interest and explain the convenient method for the preparation of 2-deuterated ketones and aldehydes by hydrolysis of enamines in heavy water (27). [Pg.111]

These structural problems are also insoluble by physical methods alone. The infrared spectrum often gives an unambiguous decision about the structure in the solid state the characteristic bands of the carbonyl or the hydroxyl group decided whether the compound in question is a carbinolamine or an amino-aldehyde. However, tautomeric equilibria occur only in solution or in the liquid or gaseous states. Neither infrared nor ultraviolet spectroscopy are sufficiently sensitive to investigate equilibria in which the concentration of one of the isomers is very small but is still not negligible with respect to the chemical reaction. [Pg.174]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The values given in Table 19.2 are remarkably constant from one aldehyde or ketone to another. As a result, IR spectroscopy is a powerful tool for identifying the kind of a carbonyl group in a molecule of unknown structure. An unknown that shows an IR absorption at 1730 cm 1 is almost certainly an aldehyde rather than a ketone an unknown that shows an IR absorption at 1750 cm-1 is almost certainly a cvclopentanone, and so on. [Pg.730]

Infrared radiation, electromagnetic spectrum and, 419, 422 energy of. 422 frequencies of, 422 wavelengths of, 422 Infrared spectroscopy, 422-431 acid anhydrides, 822-823 acid chlorides, 822-823 alcohols. 428, 632-633 aldehydes, 428. 730-731 alkanes, 426-427 alkenes, 427 alkynes, 427 amides. 822-823 amines, 428, 952 ammonium salts, 952-953 aromatic compound, 427-428, 534 bond stretching in, 422... [Pg.1301]

Treatment of the Z-aldehyde 9 (R1 = R2 = H) with trifluoroacetic acid in dichloromethane at — 10 C, then with l,4-diazabicyclo[2.2.2]octane or /V,/V-diethylpyridin-4-amine, constitutes the first synthesis of 27/-azepine (10, R1 = R2 = H) which was isolated, with great difficulty and in very low yield (1 %), as a highly volatile, unstable oil, the structure of which was confirmed by high field H and 13CNMR spectroscopy.290 Similar treatment of the Z-alkenones 9a-d furnishes the thermally unstable (5)-2/7-azepines lOa-d in much higher yields.291... [Pg.119]

Many impurities are present in commercial caprolactam which pass into the liquid wastes from PCA manufacture from which caprolactam monomer may be recovered. Also, the products of die thermal degradation of PCA, dyes, lubricants, and other PCA fillers may be contained in the regenerated CL. Identification of die contaminants by IR spectroscopy has led to the detection of lower carboxylic acids, secondary amines, ketones, and esters. Aldehydes and hydroperoxides have been identified by polarography and thin-layer chromatography. [Pg.540]

In addition, a 532 (visible) or 355 (UV region) nm laser-induced photoisomerization of allylic alcohols to aldehydes catalyzed by [Fe3(CO)i2] or [Fe(CO)4PPh3] was developed by Fan [176]. In this reaction, key intermediates such as the 7i-allyl hydride species [FeH(CO)3(q -C3H3ROH)] (R = H, Me) were detected by pulsed laser FTIR absorption spectroscopy. These results strongly support the 7i-allyl mechanism of photoisomerization of allyl alcohols. [Pg.63]

In a typical run, bis(l,2-diphenylphosphino)ethane (DPPE) (0.022 g, 0.05 mmol) and 1,3 diene (32.5 mmol) are added to a portion of the co-condensate, containing 5.2 mg of rhodium (0.05 mg. atom) in 10 ml of mesitylene. The solution is introduced by suction into an evacuated, 80 ml stainless steel autoclave. Carbon monoxide is introduced to the desired pressure and the autoclave is rocked and heated at 80 °C. Hydrogen is rapidly charged to give 1 1 gas composition. When the pressure reaches the theoretical value corresponding to the desired conversion, the autoclave is cooled, depressurised, and the reaction mixture analyzed by GLC. The crude product is distilled. The aldehydes are obtained as pure samples by preparative GLC and characterized by H NMR spectroscopy and GC-MS analysis. [Pg.449]

Lodge, J.K., Patel, S.U. and Sadler, P.J. (1993). Aldehydes from metal ion- and lipoxygenase-induced lipid peroxidation detection by H-n.m.r. spectroscopy. Biochem. J. 289, 149-153. [Pg.20]

The relatively basic (hydroxyalkyl)phosphines act toward LMCs as reductants and, compatible with this, also as strong nucleophiles. We have studied such reactions in aqueous and D2O solutions by P-, H-, and C-NMR spectroscopies (including 2D correlation methods), product isolation and, when possible, X-ray analysis of isolated compounds or their derivatives. Thus, aromatic aldehyde moieties present in lignin (e.g., 3) are reduced to the corresponding alcohols (see 4) with co-production of the phosphine oxide in D2O, -CH(D)OD is formed selectively (36). The mechanism proceeds via a phosphonium species formed by initial nucleophilic attack of the P-atom at the carbonyl C-atom, i.e., via ArCH(OH)P%, where Ar is the aromatic residue and R is the hydroxyalkyl substituent (36). When the aldehyde contains a 4-OH substituent, the alcohol product... [Pg.12]

Photocatalytic oxidation is a novel approach for the selective synthesis of aldehyde and acid from alcohol because the synthesis reaction can take place at mild conditions. These reactions are characterized by the transfer of light-induced charge carriers (i.e., photogenerated electron and hole pairs) to the electron donors and acceptors adsorbed on the semiconductor catalyst surface (1-4). Infrared (IR) spectroscopy is a useful technique for determining the dynamic behavior of adsorbed species and photogenerated electrons (5-7). [Pg.463]

The acid (VII) formed in the Jones oxidation is readily separated from the nonacidic organic material by extraction of the ether layer with NaHC03 solution. The material not extracted by NaHC03 (neutral organics) was shown by NMR spectroscopy to consist of primarily the keto aldehyde VI. [Pg.420]


See other pages where Aldehyde spectroscopy is mentioned: [Pg.563]    [Pg.78]    [Pg.524]    [Pg.374]    [Pg.252]    [Pg.665]    [Pg.732]    [Pg.797]    [Pg.198]    [Pg.133]    [Pg.299]    [Pg.563]    [Pg.738]    [Pg.611]    [Pg.204]    [Pg.283]    [Pg.730]    [Pg.731]    [Pg.733]    [Pg.736]    [Pg.1284]    [Pg.1297]    [Pg.1308]    [Pg.1330]    [Pg.539]    [Pg.96]    [Pg.622]    [Pg.172]    [Pg.872]    [Pg.99]    [Pg.128]    [Pg.405]    [Pg.458]    [Pg.460]   
See also in sourсe #XX -- [ Pg.822 , Pg.823 , Pg.824 , Pg.825 , Pg.826 , Pg.827 ]

See also in sourсe #XX -- [ Pg.811 , Pg.812 , Pg.813 , Pg.814 , Pg.815 , Pg.816 ]




SEARCH



Aldehydes mass spectroscopy

Aldehydes ultraviolet spectroscopy

Infrared spectroscopy aldehydes

Infrared spectroscopy aldehydes and ketones

Nuclear magnetic resonance spectroscopy aldehydes

Nuclear magnetic resonance spectroscopy aldehydes and ketones

Spectroscopy of aldehydes and ketones

© 2024 chempedia.info