Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols a,P-unsaturated

Aryl and vinylic bromides and iodides react with the least substituted and most electrophilic carbon atoms of activated olefins, e.g., styrenes, allylic alcohols, a,p-unsaturated esters and nitriles. [Pg.42]

The ate complex LiAlHBu"Bu 2 is prepared from DIBAL-H and n-butyllithium in either THF or toluene-hexane. This reagent is more effective for selective 1,2-reduction of enones to the corresponding allylic alcohol than is DIBAL-H alone. The reagent also reduces esters, lactones and acid chlorides to the corresponding alcohols, and epoxides to the respective alcohols. a,p-Unsaturated ketones derived from dehydration of aldol products from I-(arylthio)cyclopropanecarbaldehydes and ketones were selectively reduced by this ate complex or by DIBAL-H itself, yielding the allylic alcohols with minor... [Pg.544]

Propanol doped on dehydrated alumina reduces various aldehydes and ketones at room temperature to the corresponding alcohols. a,p-Unsaturated aldehydes are selectively reduced under these conditions to the corresponding allylic alcohols. For example, citral is converted to geraniol in 88% yield. a,p-Unsaturated nitriles are reduced to saturated nitriles with triethylamine-formic acid azeotrope in... [Pg.564]

Aliphatic alcohols a,P-Unsaturated alcohols Aromatic alcohols... [Pg.239]

Oxidation of an alkene may take place at the double bond or at the adjacent allylic positions, and important synthetic reactions of each type are known. Reactions at the double bond, such as epoxidation and dihydroxylation, are described in Chapter 5. Allylic oxidation is of value in synthesis and provides a method to access allylic alcohols, a,p-unsaturated aldehydes or a,p-unsaturated ketones. A common reagent for such transformations is selenium dioxide. For example, with... [Pg.374]

Several years ago, we reported the synthesis and synthetic utility of lithium aminoborohydrides (LABs) a new class of powerful, safe, and highly selective reducing agents (2, 3). These reagents performed many of the transformations for which lithium aluminum hydride is usually used. Thus, the following reduction reactions were carried out with LABs aldehydes and ketones to alcohols, esters to alcohols, oc,P>unsaturated ketones to allylic alcohols, a,P-unsaturated esters to allylic alcohols, alkyl halides to hydro-carbons, azides to amines, and epoxides to alcohols. These reduction reactions are summarized in Figure 3. [Pg.19]

T. Iwahama, S. Sakaguchi, Y. Ishii, Catalytic a-hydroxy carbon radical generation and addition. Synthesis of a-hydroxy-y-lactones from alcohols, a,p-unsaturated esters and dioxygen, Chem. Commun. (2000) 613-614. [Pg.287]

In recent years, catalytic carboalumination of acetylenes has found use in the synthesis of cycloalkenes [98-101], trisubstituted olefins, homoallyl alcohols, a,p-unsaturated esters, 1,3-enyne-l,4-disilanes [102-105], a,p-unsaturated organoboron or zirconium compounds, and also natural and biologically active compounds. For example, key synthons for the preparation of prostaglandins [86,... [Pg.226]

A particularly useful reaction has been the selective 1,2-reduction of a, P-unsaturated carbonyl compounds to aHyUc alcohols, accompHshed by NaBH ia the presence of lanthanide haUdes, especially cerium chloride. Initially appHed to ketones (33), it has been broadened to aldehydes (34) and acid chlorides (35). NaBH by itself gives mixtures of the saturated and unsaturated alcohols. [Pg.304]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Isopropyl alcohol can be oxidized by reaction of an a,P-unsaturated aldehyde or ketone at high temperature over metal oxide catalysts (28). In one Shell process for the manufacture of aHyl alcohol, a vapor mixture of isopropyl alcohol and acrolein, which contains two to three moles of alcohol per mole of aldehyde, is passed over a bed of uncalcined magnesium oxide [1309-48-4] and zinc oxide [1314-13-2] at 400°C. The process yields about 77% aHyl alcohol based on acrolein. [Pg.105]

When the a,P-unsaturated ketone is hydrogenated to the alcohol, a product with an intense sandalwood odor is produced (162). Many other examples of useful products have been made by condensation of campholenic aldehyde with ketones such as cyclopentanone and cyclohexanone. [Pg.424]

The highly ionic thaHic nitrate, which is soluble in alcohols, ethers, and carboxyhc acids, is also a very useful synthetic reagent. Oxidation of olefins, a,P-unsaturated carbonyl compounds, P-carbonyl sulfides, and a-nitrato ketones can aH be conveniently carried out in good yields (31,34—36). [Pg.470]

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

Corey used a chiral bromoborane 75 (1.1 equiv.) to promote the addition of tert-butyl bromoacetate (76) to aromatic, aliphatic, and a,P-unsaturated aldehydes to give the halo alcohols 77 with high enantio- and diastereoselectivities (Table 1.10) [35]. [Pg.20]

The 9,10-phosphonostearic acid in form of its sodium salt shows a good thermal stability and was efficient as an inhibitor in rust protection. The diethyl-phosphonoacetoxystearic acid methyl ester is used as additive in high-pressure lubricants. Rust protection properties are also shown by 9,10-phosphonostearyl alcohol [157]. Trisodium 9,10-phosphonostearate possesses the best surface activity in an 0.2% aqueous solution showing 33 mN/m at 30°C and a pH value of 10.5 [156]. By the addition of dialkyl phosphite to a,p-unsaturated ketones the y-oxophosphonic acids are available [159]. Addition of dialkyl phosphite to y-ketoacids leads to a-hydroxy-y-carboxyphosphonates see Eq. (86) ... [Pg.584]

Sulfonic peracids (66) have also been applied recently to the preparation of acid sensitive oxiranes and for the epoxidation of allylic and homoallylic alcohols, as well as relatively unreactive a, p - unsaturated ketones. These reagents, prepared in situ from the corresponding sulfonyl imidazolides 65, promote the same sense of diastereoselectivity as the conventional peracids, but often to a higher degree. In particular, the epoxidation of certain A -3-ketosteroids (e.g., 67) with sulfonic peracids 66 resulted in the formation of oxirane products (e.g., 68) in remarkably high diastereomeric excess. This increased selectivity is most likely the result of the considerable steric requirements about the sulfur atom, which enhances non-bonded interactions believed to be operative in the diastereoselection mechanism <96TET2957>. [Pg.51]

Both aliphatic and aromatic terminal alkynes reacted with aliphatic aldehydes giving exclusively a mixture of ( ,Z)-1,5-dihalo-1,4-dienes and disubstituted ( )-a,p-unsaturated ketones, the former being the major products in all cases. When nonterminal aromatic acetylenes were used, the trisubstituted ( )-a,p-unsat-urated ketones were the exclusive compounds obtained. The procedure was not valid for ahphatic and unsaturated alkymes. However, the catalytic system was found to be compatible with alcohols and their corresponding acetates although limited yields were obtained. [Pg.9]

As an extension of this work, the same authors explored such methodology for the synthesis of 2,6-disubstituted dihydropyrans using secondary homopropargylic alcohols (Scheme 10, route E). Surprisingly, the treatment of pent-4-yn-2-ol and 3-methylbutanal in the presence of FeCls led to unsaturated ( )-(3-hydroxyketone and ( )-a,p-unsaturated ketone in 2.5 1 ratio and 65% yield, without any trace of the expected Prins-type cyclic product (Scheme 22) [36]. To test the anion influence in this coupling, FeCE and FeBrs were used in a comparative study for the reaction of pent-4-yn-2-ol (R = R" = H, = Me) and several aldehydes. A range of aldehydes except for benzaldehyde was transformed into unsaturated (3-hydroxy-ketones in moderate to good yields. [Pg.17]

Demailly and coworkers found that the asymmetric induction increased markedly when optically active methyl pyridyl sulfoxide was treated with an aldehyde. They also synthesized (S)-chroman-2-carboxylaldehyde 152, which is the cyclic ring part of a-tocopherol, by aldol-type condensation of the optically active lithium salt of a,P-unsaturated sulfoxide. Although the diastereomeric ratio of allylic alcohol 151 formed from lithium salt 149 and 150 was not determined, the reaction of 149 with salicylaldehyde gave the diastereomeric alcohol in a ratio of 28 72 . [Pg.616]

The selective hydrogenation of a,P-unsaturated aldehydes to allylic alcohols (desired products) and/or saturated aldehydes is of commercial relevance, as mentioned in the... [Pg.171]

The use of cyclic a,p-unsaturated ketones as starting materials in the enantioselective addition of dimethyl- and diethylzinc reagents catalysed by the HOCSAC ligand was introduced by Walsh and Jeon, in 2003. As shown in Scheme 4.16, the corresponding cyclic tertiary alcohols were formed in high enantioselectivities of up to 99% ee. [Pg.169]


See other pages where Alcohols a,P-unsaturated is mentioned: [Pg.145]    [Pg.518]    [Pg.145]    [Pg.518]    [Pg.7]    [Pg.9]    [Pg.50]    [Pg.471]    [Pg.511]    [Pg.108]    [Pg.178]    [Pg.254]    [Pg.512]    [Pg.176]    [Pg.801]    [Pg.925]    [Pg.1009]    [Pg.1014]    [Pg.26]    [Pg.27]    [Pg.254]    [Pg.226]    [Pg.442]    [Pg.128]    [Pg.158]    [Pg.253]    [Pg.327]   
See also in sourсe #XX -- [ Pg.181 , Pg.189 , Pg.194 , Pg.212 ]




SEARCH



A,(3-unsaturated alcohols

Alcohols unsaturated

© 2024 chempedia.info