Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzyl chloride catalyst

In the absence of catalysts, toluene when treated with chlorine (or bromine) at the boiling point, preferably with exposure to sunlight or other bright light source, undergoes halogenation in the side chain. The entrance of the first chlorine atom, for example, proceeds at a much faster rate than the entrance of the second chlorine atom so that in practice the major portion of the toluene is converted into benzyl chloride before appreciable chlorination of benzyl chloride occurs ... [Pg.534]

Continuous chlorination of benzene at 30—50°C in the presence of a Lewis acid typically yields 85% monochlorobenzene. Temperatures in the range of 150—190°C favor production of the dichlorobenzene products. The para isomer is produced in a ratio of 2—3 to 1 of the ortho isomer. Other methods of aromatic ring chlorination include use of a mixture of hydrogen chloride and air in the presence of a copper—salt catalyst, or sulfuryl chloride in the presence of aluminum chloride at ambient temperatures. Free-radical chlorination of toluene successively yields benzyl chloride, benzal chloride, and benzotrichloride. Related chlorination agents include sulfuryl chloride, tert-huty hypochlorite, and /V-ch1orosuccinimide which yield benzyl chloride under the influence of light, heat, or radical initiators. [Pg.510]

Reactions of the Side Chain. Benzyl chloride is hydrolyzed slowly by boiling water and more rapidly at elevated temperature and pressure in the presence of alkaHes (11). Reaction with aqueous sodium cyanide, preferably in the presence of a quaternary ammonium chloride, produces phenylacetonitrile [140-29-4] in high yield (12). The presence of a lower molecular-weight alcohol gives faster rates and higher yields. In the presence of suitable catalysts benzyl chloride reacts with carbon monoxide to produce phenylacetic acid [103-82-2] (13—15). With different catalyst systems in the presence of calcium hydroxide, double carbonylation to phenylpymvic acid [156-06-9] occurs (16). Benzyl esters are formed by heating benzyl chloride with the sodium salts of acids benzyl ethers by reaction with sodium alkoxides. The ease of ether formation is improved by the use of phase-transfer catalysts (17) (see Catalysis, phase-thansfer). [Pg.59]

Benzyl chloride reacts with benzene in the presence of a Lewis acid catalyst to give dipbenylmetbane [101 -81-5]. It undergoes self-condensation to form polymeric oils and soHds (21). With phenol, benzyl chloride produces a mixture of o- andp-her zylpbeno1. [Pg.59]

Aromatic Ring Reactions. In the presence of an iodine catalyst chlorination of benzyl chloride yields a mixture consisting mostly of the ortho and para compounds. With strong Lewis acid catalysts such as ferric chloride, chlorination is accompanied by self-condensation. Nitration of benzyl chloride with nitric acid in acetic anhydride gives an isomeric mixture containing about 33% ortho, 15% meta, and 52% para isomers (27) with benzal chloride, a mixture containing 23% ortho, 34% meta, and 43% para nitrobenzal chlorides is obtained. [Pg.59]

The catalyst, 3-benzyl-5-(2-hydroxyethyl )-4-methyl-l, 3-thiazoHum chloride, is supplied by Fluka AG, Buchs, Switzerland, and by Tridom Chemical, Inc., Hauppauge, New York. The thiazolium salt may also be prepared as described below by benzylation of 5-(2-hydroxyethyl)-4-methyl-l,3-thiazole which is commercially available from E. Merck, Darmstadt, West Germany, and Columbia Organic Chemicals Co., Inc., Columbia, SC. The acetonitrile used by the checkers was dried over Linde 3A molecular sieves and distilled under nitrogen, bp 77-78°C. The same yield of thiazolium salt was obtained by the checkers when benzyl chloride and acetonitrile from commercial sources were used without purification. [Pg.171]

Diphenylmethane has been prepared with aluminum chloride as a catalyst from methylene chloride and benzene, from chloroform and benzene as a by-product in the preparation of triphenylmethane, and from benzyl chloride and benzene. It has been prepared by the reduction of benzophenone with hydriodic acid and phosphorus, or with sodium and alcohol. It has also been made by heating a solution of benzyl chloride in benzene with zinc dust, or with zinc chloride. The above method is only a slight modification of the original method of Hirst and Cohen. ... [Pg.35]

Benzy 1 2 carbomethoxycyclopentanone from 2 carbomethoxycyclopentanone and benzyl chloride, 45, 8 2 Benzylcyclopentanone, 46, 7 N Benzyloxycarbonylglycine, 46, 49 Benzyltnmethylammonium hydroxide as catalyst for condensation of benzil with dibenzyl ketone, 46,... [Pg.121]

Benzylacetophenone has been prepared by the reduction of benzalacetophenone with zinc and acetic acid1 and catalytic-ally with palladium and hydrogen 2 by the reduction of /3-duplo-benzylidene acetophenone monosulfide 3 by the oxidation of the corresponding car bind with chromic acid 4 by the hydrolysis of ethyl benzyl benzoylacetate 5 from acetophenone and benzyl chloride by the action of sodamide 6 and from benzoic and hydrocinnamic adds using as catalysts manganese oxide 7 and ferric oxide.8... [Pg.37]

The most valuable and comprehensive kinetic studies of alkylation have been carried out by Brown et al. The first of these studies concerned benzylation of aromatics with 3,4-dichloro- and 4-nitro-benzyl chlorides (these being chosen to give convenient reaction rates) with catalysis by aluminium chloride in nitrobenzene solvent340. Reactions were complicated by dialkylation which was especially troublesome at low aromatic concentrations, but it proved possible to obtain approximately third-order kinetics, the process being first-order in halide and catalyst and roughly first-order in aromatic this is shown by the data relating to alkylation of benzene given in Table 77, where the first-order rate coefficients k1 are calculated with respect to the concentration of alkyl chloride and the second-order coefficients k2 are calculated with respect to the products of the... [Pg.140]

Piperazine, N-alkylation with benzyl chloride, 42, 19 Piperazine, 1-benzyl-, 42,19 Piperidine, addition to ethylene, 43, 45 as catalyst for Claisen-Schmidt condensation, 41, 40 Piperidine, 1-ethyl-, 43, 45 Piperidine, 1-(2-naphthyl)-, 40,74 Pivalic acid, oxidative coupling to a,a,-a, a -tetramethyladipic add, 40, 92... [Pg.120]

Co(TPP) has been demonstrated to act as a catalyst for the electrocarboxylation of benzyl chloride and butyl bromide with CO - to give PhCHiCfOiOCH Ph and Bu0C(0)C(0)0Bu, respectively. The propo.sed mechanism involved Co(TPP)R and [Co(TPP-N-R) as intermediates (the latter detected by spectroscopy) in the catalytic production of free R or R-, which then reacted directly with Co(TPP) precipitated on graphite foil has been successfully used for the determination of organic halides, including DDT and 1,2,3,4,5,6-hexachlorocyclohexane (lindane), to sub-ppm level in aqueous solution. Deoxygenation of the solutions is not required, and the technique is moderately insensitive to the ionic composition of the solution. ... [Pg.286]

Similarly, Pd/tppts was used by Hoechst (Kohlpainter and Beller, 1997) as the catalyst in the synthesis of phenylacetic acid by biphasic carbonylation of benzyl chloride (Fig. 2.29). The new process replaces a classical synthesis by reaction of benzyl chloride with sodium cyanide, followed by hydrolysis of the resulting benzyl cyanide. Although the new process produces one equivalent of sodium chloride, this is substantially less salt production than in the original process. Moreover, sodium cyanide is about seven times as expensive per kg as carbon monoxide. [Pg.47]

Sulphated zirconia catalysts can be acidic or superacidic depending on the method of treatment. A variety of acid-catalysed reactions, referred to earlier in this section, can be carried out with sulphated zirconia. Yadav and Nair (1999) have given a state-of-the art review on this subject. Examples of benzylation of benzene with benzyl chloride / benzyl alcohol, alkylation of o-xylene with. styrene, alkylation of diphenyl oxide with 1-dodecene, isomerization of epoxides to aldehydes, acylation of benzene / chlorobenzene with p-chloro benzoylchloride, etc. are covered in the review. [Pg.137]

Alkylation reactions. In a laboratory procedure for the alkylation of benzene with benzyl chloride using the catalyst EPZIO at room temperature 100% conversion of the alkylating agent in less than 15 minutes was obtained (Envirocats, 1990). EPZE was efficiently used in the sulphonation of o-xylene with benzenesulphonyl chloride to give 3,4-... [Pg.155]

No catalyst) Benzyl chloride Benzal chloride Benzotrichloride Rapid side-chain chlorination of toluene proceeds in the dark with sulphuryl chloride in the presence of dibenzoyl peroxide (O 001-0 005 mol per mol of SOjClj) as catalyst ... [Pg.534]

Friedel-Crafts alkylations are among the most important reactions in organic synthesis. Solid acid catalysts have advantages in ease of product recovery, reduced waste streams, and reduction in corrosion and toxicity. In the past, people have used (pillared) clays (18), heteropolyacids (19) and zeohtes (20) for Friedel-Craft alkylations, with mixed success. Problems included poor catalyst stabihty and low activity. Benzylation of benzene using benzyl chloride is interesting for the preparation of substitutes of polychlorobenzene in the apphcation of dielectrics. The performance of Si-TUD-1 with different heteroatoms (Fe, Ga, Sn and Ti) was evaluated, and different levels of Fe inside Si-TUD-1 (denoted Fei, Fe2, Fes and Feio) were evaluated (21). The synthesis procedure of these materials was described in detail elsewhere (22). [Pg.372]

Supemucleophilic polymers containing the 4-(pyrro-lidino)pyridine group were synthesized from the corresponding maleic anhydride copolymers and also by cyclopolymerization of N-4-pyridyl bis(methacryl-imide). The resulting polymers were examined for their kinetics of quaternization with benzyl chloride and hydrolysis of pj-nitrophenylacetate. In both instances, the polymer bound 4-(dialkylamino)pyridine was found to be a superior catalyst than the corresponding low molecular weight analog. [Pg.72]

Example 6.3 Example 5.4 developed a kinetic model for the manufacture of benzyl acetate from benzyl chloride and sodium acetate in a solution of xylene in the presence of triethylamine as catalyst, according to ... [Pg.106]

Cobaloxime(I) generated by the electrochemical reductions of cobaloxime(III), the most simple model of vitamin Bi2, has been shown to catalyze radical cyclization of bromoacetals.307 Cobalt(I) species electrogenerated from [ConTPP] also catalyze the reductive cleavage of alkyl halides. This catalyst is much less stable than vitamin Bi2 derivatives.296 It has, however, been applied in the carboxylation of benzyl chloride and butyl halides with C02.308 Heterogeneous catalysis of organohalides reduction has also been studied at cobalt porphyrin-film modified electrodes,275,3 9-311 which have potential application in the electrochemical sensing of pollutants. [Pg.489]

N-Ethylaniline was alkylated by reaction with benzyl chloride under liquid-liquid PTC conditions in the presence of 30% sodium hydroxide solution and CTAB as a catalyst. Microwave irradiation (25 min) of the reaction mixture in a sealed vessel afforded N-benzyl-N-ethylaniline in 90% yield, compared with 16 h of conventional heating (oil bath) (Eq. 30) [24]. [Pg.161]

Friedel-Crafts reactions involving electrophilic substitution of aromatic compounds have been reported on solid base catalysts such as thallium oxide and MgO. The rates of benzylation of toluene by benzyl chloride over MgO nanocrystals were found to be of the order CP-MgO > CM-MgO > AP-MgO.56 An important observation in the study was that x-ray diffraction of the spent catalyst... [Pg.53]

Koyande, S.N. Jaiswal, R.G. Jayaram, R.V. Reaction kinetics of benzylation of benzene with benzyl chloride on sulfate-treated metal oxide catalysts. Ind. Eng. Chem. Res. 1998, 37, 908-913. [Pg.59]

Cobalt(I) salen has been employed as a catalyst for the reduction of the following species benzal chloride [159] benzotrichloride [160] 1-bromobutane, 1-iodobutane, and 1,2-dibromobutane [161] iodoethane [162], benzyl chloride [163], and ethyl chloroacetate [164]. Rusling and coworkers have investigated the use of cobalt(I) salen, as well as vitamin Bi2s and cobalt(I) phthalocyanine, in both homogeneous phase and bicontin-uous microemulsions for the catalytic reduction of vicinal dibromides [165] and... [Pg.230]

Electrocarboxylahon of benzylic chlorides has been intensively investigated in the presence of a Ni(II) complex as a catalyst [274-277]. Eenoprofen (165), an anti-inflammatory agent, is electrosyn-thesized from (164) in a THE/HMPA-Bu4NBE4-(C/Ni) system in the presence of NiCl2 (dppp) as a mediator under bubbling... [Pg.536]

Devulcanization in the Presence of Benzyl Chloride and Methyl Chloride. The above results suggest that catalyst efficiency might be improved when devulcanization is carried out with added alkylating agent. We find that this is, indeed, the case. Added benzyl chloride or methyl chloride further decreases the crosslink density for a given concentration of catalyst (Table 11). However, 1- and 2-chlorobutanes appear to be ineffective, possibly because of dehydrochlorination. [Pg.161]

Non-steroidal anti-inflammatory a-arylpropionic acids were also prepared from the corresponding benzylic chlorides and CO2 using as catalyst Ni-dppe or Ni-dppp in the presence of COD (Table 16) [103]. The use of the catalyst in this reaction is not absolutely required but its use limits the homocoupling reaction which would be the main process at high concentration of the benzylic halide and low pressure of CO2 [104]. [Pg.163]

Tellurium tetrachloride, a source of TeClj ions, behaves as a cationic catalyst for oligo-and polymerization reactions. Two types of monomer, phenyl-substituted ethylenes and benzyl chlorides, have been submitted to these reactions. ... [Pg.341]


See other pages where Benzyl chloride catalyst is mentioned: [Pg.876]    [Pg.876]    [Pg.534]    [Pg.191]    [Pg.88]    [Pg.177]    [Pg.534]    [Pg.372]    [Pg.24]    [Pg.116]    [Pg.1440]    [Pg.279]    [Pg.283]    [Pg.337]    [Pg.228]    [Pg.12]    [Pg.210]    [Pg.187]    [Pg.260]    [Pg.91]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Benzyl chloride

Benzylic chlorides

Chloride, catalysts

© 2024 chempedia.info