Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bound water molecule

The mechanism of the tarmage is accepted to be largely one of replacement of the bound water molecules by the phenoHc groups of the tannin and subsequent formation of hydrogen bonds with the peptide bonds of the protein. The effect of this bonding is to make the leather almost completely biorefractive. [Pg.86]

Ion-Dipole Forces. Ion-dipole forces bring about solubihty resulting from the interaction of the dye ion with polar water molecules. The ions, in both dye and fiber, are therefore surrounded by bound water molecules that behave differently from the rest of the water molecules. If when the dye and fiber come together some of these bound water molecules are released, there is an increase in the entropy of the system. This lowers the free energy and chemical potential and thus acts as a driving force to dye absorption. [Pg.350]

Note that in Ref. 55 the "c values for the P-bound and N-bound water molecules were eiToneously interchanged. Source Ref. 55. [Pg.493]

D. Hydrated monovalent cation approaching the carbonyl oxygens of a transmembrane channel. The carbonyl oxygens at the mouth replace water in the first coordination shell. As the ion moves through the channel, it retains one bound water molecule preceding and following it and the walls of the channel provide for lateral coordination. (Parts A through D reproduced with permission from Ref. 6>. [Pg.181]

The acceleration by anions under both conditions was attributed to displacement of one of the water molecules presumed to be tetrahedrally coordinated with the mercuric ion, the subsequent reaction being then envisaged as displacement of the anion or water molecule by the aromatic the anions which cause reaction to take place more slowly were presumed to be more tightly bound to the mercuric ion than water. It has, however, been pointed out that less tightly bound anions would be unlikely to displace the more tightly bound water molecules in the first place438. [Pg.187]

Figure 3.1. (a) Hexagonal array of water molecules in the solid state, (b) Tetrahedral arrangement of bound water molecules, (c) Trace of the tetrahedral arrangement if there are five bound water molecules on a surface. This mapping is equivalent to the von Neumann neighborhood... [Pg.40]

Figure 3.6a and b. A variegated cell depicting two patterns equivalent to the mapping of a tetrahedrally bound water molecule as shown in Figure 3.2... [Pg.51]

One last class of mononuclear non-haem iron enzyme that we have not yet considered, consists of the microbial superoxide dismutases with Fe(III) at their active site. The crystal structure of the E. coli enzyme shows a coordination geometry reminiscent of protocatechuate 3,4-dioxygenase, with four endogenous protein ligands, three His and one Asp residue, and one bound water molecule (Carlioz et ah, 1988). [Pg.85]

As an example, consider an early calculation of isotope effects on enzyme kinetics by Hwang and Warshel [31]. This study examines isotope effects on the catalytic reaction of carbonic anhydrase. The expected rate-limiting step is a proton transfer reaction from a zinc-bound water molecule to a neighboring water. The TST expression for the rate constant k is... [Pg.415]

The formal potentials ( ° ) of the three kinds of SODs were found to be dependent on solution pH as displayed in Fig. 6.6. As shown, the formal potential of bovine erythrocyte Cu, Zn-SOD decreases linearly with increasing solution pH with a slope of ca. -60mV/pH from pH 5.8 to pH 9.5 (curve b), indicating one proton and one electron are included in the electrode reaction of Cu, Zn-SOD, which is similar to previously proposed enzymatic catalytic mechanistic scheme of the Cu, Zn-SOD [139— 144], In contrast, the pH dependency of Fe-SOD from E. coli was complicated (curve a) the formal potential changes linearly with solution pH in a range from pH 5.8 to 8.5 with a slope of ca. -60mV/pH, and becomes pH-independent at above pH > 8.5. Previous studies have observed that the Fe (III) form of the protein ionizes with an apparent pKa of 9.0 0.3 and such ionization effect has been interpreted in terms of hydrolysis of a bound water molecule with p/<"a of ca. 8.5 [145], The C -pII profile of... [Pg.184]

The higher coordinating ability and Lewis acidity of Zn(H) ion in addition to the low pK of the metal-bound water molecule and the appearance of this metal ion in native phosphatases inspired a number of research groups to develop Zn(II)-containing dinuclear artificial phosphatases. In contrast, very few model compounds have been published to mimic the activity of Fe(III) ion in dinuclear centers of phosphatase enzymes. Cu(II) or lanthanide ions are not relevant to natural systems but their chemical properties in certain cases allow extraordinarily high acceleration of phosphate-ester hydrolysis [as much as 108 for copper(II) or 1013 for lanthanide(III) ions]. [Pg.223]

Even more efficient bimetallic cooperativity was achieved by the dinuclear complex 36 [53]. It was demonstrated to cleave 2, 3 -cAMP (298 K) and ApA (323 K) with high efficiency at pH 6, which results in 300-500-fold rate increase compared to the mononuclear complex Cu(II)-[9]aneN at pH 7.3. The pH-metric study showed two overlapped deprotonations of the metal-bound water molecules near pH 6. The observed bell-shaped pH-rate profiles indicate that the monohydroxy form is the active species. The proposed mechanism for both 2, 3 -cAMP and ApA hydrolysis consists of a double Lewis-acid activation of the substrates, while the metal-bound hydroxide acts as general base for activating the nucleophilic 2 -OH group in the case of ApA (36a). Based on the 1000-fold higher activity of the dinuclear complex toward 2, 3 -cAMP, the authors suggest nucleophilic catalysis of the Cu(II)-OH unit in 36b. The latter mechanism is comparable to those of protein phosphatase 1 and fructose 1,6-diphosphatase. [Pg.229]


See other pages where Bound water molecule is mentioned: [Pg.566]    [Pg.573]    [Pg.137]    [Pg.632]    [Pg.709]    [Pg.321]    [Pg.475]    [Pg.491]    [Pg.493]    [Pg.494]    [Pg.385]    [Pg.399]    [Pg.142]    [Pg.38]    [Pg.54]    [Pg.145]    [Pg.358]    [Pg.1174]    [Pg.169]    [Pg.14]    [Pg.188]    [Pg.851]    [Pg.940]    [Pg.97]    [Pg.54]    [Pg.65]    [Pg.124]    [Pg.243]    [Pg.146]    [Pg.150]    [Pg.150]    [Pg.151]    [Pg.153]    [Pg.173]    [Pg.336]    [Pg.398]    [Pg.43]    [Pg.50]    [Pg.156]   
See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.273 ]




SEARCH



Bound water

Water molecule

Water molecule molecules

© 2024 chempedia.info