Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aerospace resins

As a representative example of cure monitoring using a common commercially used aerospace resin and a complex cure cycle, Figure 4.6 displays the output of epoxy system. This resin consists of a tetraglycidyl 4,4 -diamino diphenylmethane (TGDDM) and diamino diphenyl sulfone (DDS). This system with catalyst is sold by the Hercules Corporation as 3501-6. [Pg.145]

FRP materials are made up of the polymer and reinforcing fibers. The polymer is typically a thermoset polymer thermoplastics can be used as well. Some typical thermoset polymers used are epoxy resins, unsaturated polyester resins, epoxy vinyl ester resins, phenolic resins, and high performance aerospace resins such as cyanate esters, polyimides, and bismaleimides. These resins... [Pg.703]

Nanocomposite Aerospace Resins for Carbon Fiber-Reinforced Composites... [Pg.102]

Wilson, S., et al., 1999. SPARC 5 Axis, 3D Woven, Low Crimp Preforms, Bombardier Aerospace, Resin Transfer Molding SAMPE Monograph No. 3, Short Brothers Pic. [Pg.264]

Bisphenol A. One mole of acetone condenses with two moles of phenol to form bisphenol A [80-05-07] which is used mainly in the production of polycarbonate and epoxy resins. Polycarbonates (qv) are high strength plastics used widely in automotive appHcations and appHances, multilayer containers, and housing appHcations. Epoxy resins (qv) are used in fiber-reinforced larninates, for encapsulating electronic components, and in advanced composites for aircraft—aerospace and automotive appHcations. Bisphenol A is also used for the production of corrosion- and chemical-resistant polyester resins, polysulfone resins, polyetherimide resins, and polyarylate resins. [Pg.99]

Phenohc resins are the oldest form of synthetic stmctural adhesives. Usage ranges from bonding automobile and other types of brake linings to aerospace apphcations. These adhesives have a reputation for providing the most durable stmctural bonds to aluminum. Because of volatiles, however, and the need for high pressures, the phenohc resins are used less as adhesives than the epoxy resins. [Pg.233]

Electrical Applications. The largest application of PTFE is for hookup and hookup-type wire used in electronic equipment in the military and aerospace industries. Coaxial cables, the second largest appHcation, use tapes made from fine powder resins and some from granular resin. Interconnecting wire appHcations include airframes. Other electrical appHcations include computer wire, electrical tape, electrical components, and spaghetti tubing. [Pg.355]

Composites. Various composite materials have evolved over the years as a significant class of high performance textile products. The prototype composite is carbon fiber with an epoxy resin matrix for stmctural akcraft components and other aerospace and military appHcations. Carbon fiber composites ate also used in various leisure and spotting items such as golf clubs, tennis rackets, and lightweight bicycle frames. However, other types of appHcations and composites ate also entering the marketplace. For example, short ceUulose fiber/mbbet composites ate used for hoses, belting, and pneumatic tire components. [Pg.71]

Carbon—carbon composites are used in high temperature service for aerospace and aircraft appHcations as weU as for corrosion-resistant industrial pipes and housings. AppHcations include rocket nozzles and cases, aircraft brakes, and sateUite stmctures. Carbonized phenoHc resin with graphite fiber functioned effectively as the ablative shield in orbital re-entry vehicles for many years (92). [Pg.307]

The positive plates are siatered silver on a silver grid and the negative plates are fabricated from a mixture of cadmium oxide powder, silver powder, and a binder pressed onto a silver grid. The main separator is four or five layers of cellophane with one or two layers of woven nylon on the positive plate. The electrolyte is aqeous KOH, 50 wt %. In the aerospace appHcations, the plastic cases were encapsulated in epoxy resins. Most usehil cell sizes have ranged from 3 to 15 A-h, but small (0.1 A-h) and large (300 A-h) sizes have been evaluated. Energy densities of sealed batteries are 26-31 W-h/kg. [Pg.557]

Boron filaments are formed by the chemical vapor deposition of boron trichloride on tungsten wire. High performance reinforcing boron fibers are available from 10—20 mm in diameter. These are used mainly in epoxy resins and aluminum and titanium. Commercial uses include golf club shafts, tennis and squash racquets, and fishing rods. The primary use is in the aerospace industry. [Pg.184]

Phenohc resins (qv), once a popular matrix material for composite materials, have in recent years been superseded by polyesters and epoxies. Nevertheless, phenohc resins stiU find considerable use in appHcations where high temperature stabiHty and fire resistance are of paramount importance. Typical examples of the use of phenoHc resins in the marine industry include internal bulkheads, decks, and certain finishings. The curing process involves significant production of water, often resulting in the formation of voids within the volume of the material. Further, the fact that phenoHcs are prone to absorb water in humid or aqueous conditions somewhat limits their widespread appHcation. PhenoHc resins are also used as the adhesive in plywood, and phenohc molding compounds have wide use in household appliances and in the automotive, aerospace, and electrical industries (12). [Pg.7]

Eor more demanding uses at higher temperatures, for example, in aircraft and aerospace and certain electrical and electronic appHcations, multifunctional epoxy resin systems based on epoxy novolac resins and the tetraglycidyl amine of methylenedianiline are used. The tetraglycidyl amine of methylenedianiline is currently the epoxy resin most often used in advance composites. Tetraglycidyl methylenedianiline [28768-32-3] (TGALDA) cured with diamino diphenyl sulfone [80-08-0] (DDS) was the first system to meet the performance requirements of the aerospace industry and is still used extensively. [Pg.20]

Resins used in advanced or high performance composites, which contain more than 50 wt % reinforcing agent and are the typical aerospace materials. [Pg.35]

Polymer-matrix composites for aerospace and transport are made by laying up glass, carbon or Kevlar fibres (Table 25.1) in an uncured mixture of resin and hardener. The resin cures, taking up the shape of the mould and bonding to the fibres. Many composites are based on epoxies, though there is now a trend to using the cheaper polyesters. [Pg.264]

Although the acrylate adhesives are readily available and studies have shown that they can produce reasonable bonding properties, they have the disadvantages of having high shrinkage, high fluid absorption, and low service temperatures. Acrylate adhesive applications would be limited. The development of EB-curable epoxy adhesives would have applications in the aerospace and automotive industry and potential wider uses. The most immediate application for these resin systems is composite repair of commercial and military aircraft. [Pg.1010]

If one amino group in o-phenylenediamine is converted to an amide group by formic acid, the intermediate benzimidazole is formed. This reaction, conducted with a wide range of reactants, produces resins (polybenzimidazoles) used as high-temperature adhesives for laminates in the aerospace industry. Heat insulation is made by including tiny bubbles of silica and all... [Pg.283]


See other pages where Aerospace resins is mentioned: [Pg.706]    [Pg.41]    [Pg.3]    [Pg.383]    [Pg.750]    [Pg.750]    [Pg.223]    [Pg.8540]    [Pg.706]    [Pg.41]    [Pg.3]    [Pg.383]    [Pg.750]    [Pg.750]    [Pg.223]    [Pg.8540]    [Pg.186]    [Pg.233]    [Pg.533]    [Pg.292]    [Pg.308]    [Pg.55]    [Pg.95]    [Pg.527]    [Pg.3]    [Pg.3]    [Pg.7]    [Pg.9]    [Pg.10]    [Pg.35]    [Pg.364]    [Pg.371]    [Pg.437]    [Pg.442]    [Pg.677]    [Pg.1009]    [Pg.1132]    [Pg.268]   


SEARCH



Aerospace

Aerospace engineering requirements resin materials

Aerospace epoxy resins

Aerospace epoxy resins curing process

Aerospace epoxy resins density

Aerospace industry resins

Aerospace resins epoxy with curing agent

Aerospace resins nanocomposites

Aerospace structural applications, thermoset resins

Resinous polymers aerospace applications

© 2024 chempedia.info