Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption of catalyst

Controlled burning of carbon does not regenerate all catalysts. Catalysts can be deactivated by particle growth, compound formation, tramp metal deposition, crystal-phase changes, and adsorption of catalyst poisons that cannot be reversed by thermal oxidative treatment. [Pg.102]

In this chapter, the adsorption of catalyst precursors on oxidic surfaces will be discussed in terms of a chemical-interaction model, i.e. allowing the formation of inner-sphere complexes, but it is important to realize that other models are being advocated in the literature as well on the one hand, one has the physical adsorption models, allowing only the formation of outer-sphere complexes, and on the other, it is proposed that during adsorption one really has a reaction between the precursor and the support to form a new phase or phases. We will meet the latter situation in our discussion of deposition-precipitation (Section 10.3.3), but we will disregard it when discussing impregnation chemistry (Section 10.3.2). [Pg.466]

Several approaches to immobilize transition metal catalysts on polymer supports have been reported in the literature. The most representative ones are (1) immobilization of ligands as well as ligand-metal complexes by covalent and/or coordination bonds (2) adsorption of catalysts on the supports (3) formation of ionic pairs between, for example, the surface of the support bearing anionic functional groups and cationic metal species and (4) entrapment of catalysts... [Pg.78]

A definitive model for adsorption of catalyst precursors on oxides has yet to be established. However, a picture that emerges from the recent literature in this field increasingly emphasizes the importance of the intrinsic heterogeneity of adsorption sites... [Pg.250]

The adsorption of catalyst at the interface indicates that a reaction must occur there. As shown by the Volta potential measurements in the chain ... [Pg.153]

Where E is appreciable, adsorption rates may be followed by ordinary means. In a rather old but still informative study, Scholten and co-workers [130] were able to follow the adsorption of N2 on an iron catalyst gravimetrically, and reported the rate law... [Pg.706]

The sequence of events in a surface-catalyzed reaction comprises (1) diffusion of reactants to the surface (usually considered to be fast) (2) adsorption of the reactants on the surface (slow if activated) (3) surface diffusion of reactants to active sites (if the adsorption is mobile) (4) reaction of the adsorbed species (often rate-determining) (5) desorption of the reaction products (often slow) and (6) diffusion of the products away from the surface. Processes 1 and 6 may be rate-determining where one is dealing with a porous catalyst [197]. The situation is illustrated in Fig. XVIII-22 (see also Ref. 198 notice in the figure the variety of processes that may be present). [Pg.720]

As with the other surface reactions discussed above, the steps m a catalytic reaction (neglecting diffiision) are as follows the adsorption of reactant molecules or atoms to fomi bound surface species, the reaction of these surface species with gas phase species or other surface species and subsequent product desorption. The global reaction rate is governed by the slowest of these elementary steps, called the rate-detemiming or rate-limiting step. In many cases, it has been found that either the adsorption or desorption steps are rate detemiining. It is not surprising, then, that the surface stmcture of the catalyst, which is a variable that can influence adsorption and desorption rates, can sometimes affect the overall conversion and selectivity. [Pg.938]

Whereas other metal salts, especially lead stearates and srdfates, or mixtures of Groups 2 and 12 carboxylates (Ba—Cd, Ba—Zn, Ca—Zn) ate also used to stabilize PVC, the tin mercaptides are some of the most efficient materials. This increased efficiency is largely owing to the mercaptans. The principal mechanism of stabilization of PVC, in which all types of stabilizers participate, is the adsorption of HCl, which is released by the PVC during degradation. This is important because the acid is a catalyst for the degradation, thus, without neutralization the process is autocatalytic. [Pg.6]

Important physical properties of catalysts include the particle size and shape, surface area, pore volume, pore size distribution, and strength to resist cmshing and abrasion. Measurements of catalyst physical properties (43) are routine and often automated. Pores with diameters <2.0 nm are called micropores those with diameters between 2.0 and 5.0 nm are called mesopores and those with diameters >5.0 nm are called macropores. Pore volumes and pore size distributions are measured by mercury penetration and by N2 adsorption. Mercury is forced into the pores under pressure entry into a pore is opposed by surface tension. For example, a pressure of about 71 MPa (700 atm) is required to fill a pore with a diameter of 10 nm. The amount of uptake as a function of pressure determines the pore size distribution of the larger pores (44). In complementary experiments, the sizes of the smallest pores (those 1 to 20 nm in diameter) are deterrnined by measurements characterizing desorption of N2 from the catalyst. The basis for the measurement is the capillary condensation that occurs in small pores at pressures less than the vapor pressure of the adsorbed nitrogen. The smaller the diameter of the pore, the greater the lowering of the vapor pressure of the Hquid in it. [Pg.171]

The industrial catalysts for ammonia synthesis consist of far more than the catalyticaHy active iron (74). There are textural promoters, alumina and calcium oxide, that minimise sintering of the iron and a chemical promoter, potassium (about 1 wt % of the catalyst), and possibly present as K2O the potassium is beheved to be present on the iron surface and to donate electrons to the iron, increasing its activity for the dissociative adsorption of N2. The primary iron particles are about 30 nm in size, and the surface area is about 15 m /g. These catalysts last for years. [Pg.177]

The ACR Process. The first step in the SCR reaction is the adsorption of the ammonia on the catalyst. SCR catalysts can adsorb considerable amounts of ammonia (45). However, the adsorption must be selective and high enough to yield reasonable cycle times for typical industrial catalyst loadings, ie, uptakes in excess of 0.1% by weight. The rate of adsorption must be comparable to the rate of reaction to ensure that suitable fronts are formed. The rate of desorption must be slow. Ideally the adsorption isotherm is rectangular. For optimum performance, the reaction must be irreversible and free of side reactions. [Pg.510]

Activated adsorption of reactants and the desorption of the products on the active centers of the catalyst... [Pg.2190]

The flux of flie adsorbed species to die catalyst from flie gaseous phase affects die catalytic activity because die fractional coverage by die reactants on die surface of die catalyst, which is determined by die heat of adsorption, also determines die amount of uncovered surface and hence die reactive area of die catalyst. Strong adsorption of a reactant usually leads to high coverage, accompanied by a low mobility of die adsorbed species on die surface, which... [Pg.118]

The rate of formation of the products of steam reforming is extremely slow in the homogeneous reaction, and the reaction only proceeds at a useful rate in the presence of the catalyst. This indicates that adsorption of the reactant gases on the catalyst surface is a necessary step in the initiation of a useful reaction. The nature of the adsorption processes can be described by the equations ... [Pg.132]

The reaction shown above for the steam reforming of methatie led to die formation of a mixture of CO and H2, die so-called synthesis gas. The mixture was given this name since it can be used for the preparation of a large number of organic species with the use of an appropriate catalyst. The simplest example of this is the coupling reaction in which medrane is converted to ethane. The process occurs by the dissociative adsorption of methane on the catalyst, followed by the coupling of two methyl radicals to form ethane, which is then desorbed into the gas phase. [Pg.142]

In particular, emphasis will be placed on the use of chemisorption to measure the metal dispersion, metal area, or particle size of catalytically active metals supported on nonreducible oxides such as the refractory oxides, silica, alumina, silica-alumina, and zeolites. In contrast to physical adsorption, there are no complete books devoted to this aspect of catalyst characterization however, there is a chapter in Anderson that discusses the subject. [Pg.740]

Although insulators other than aluminum oxide have been tried, aluminum is still used almost universally because it is easy to evaporate and forms a limiting oxide layer of high uniformity. To be restricted, therefore, to adsorption of molecules on aluminum oxide might seem like a disadvantage of the technique, but aluminum oxide is very important in many technical fields. Many catalysts are supported on alumina in various forms, as are sensors, and in addition the properties of the oxide film on aluminum metal are of the greatest interest in adhesion and protection. [Pg.85]

Measurements of the true reaction times are sometimes difficult to determine due to the two-phase nature of the fluid reactants in contact with the solid phase. Adsorption of reactants on the catalyst surface can result in catalyst-reactant contact times that are different from the fluid dynamic residence times. Additionally, different velocities between the vapor, liquid, and solid phases must be considered when measuring reaction times. Various laboratory reactors and their limitations for industrial use are reviewed below. [Pg.244]

New templated polymer support materials have been developed for use as re versed-phase packing materials. Pore size and particle size have not usually been precisely controlled by conventional suspension polymerization. A templated polymerization is used to obtain controllable pore size and particle-size distribution. In this technique, hydrophilic monomers and divinylbenzene are formulated and filled into pores in templated silica material, at room temperature. After polymerization, the templated silica material is removed by base hydrolysis. The surface of the polymer may be modified in various ways to obtain the desired functionality. The particles are useful in chromatography, adsorption, and ion exchange and as polymeric supports of catalysts (39,40). [Pg.10]


See other pages where Adsorption of catalyst is mentioned: [Pg.317]    [Pg.251]    [Pg.134]    [Pg.153]    [Pg.317]    [Pg.251]    [Pg.134]    [Pg.153]    [Pg.741]    [Pg.176]    [Pg.179]    [Pg.281]    [Pg.385]    [Pg.387]    [Pg.405]    [Pg.293]    [Pg.480]    [Pg.529]    [Pg.174]    [Pg.177]    [Pg.224]    [Pg.347]    [Pg.380]    [Pg.119]    [Pg.119]    [Pg.127]    [Pg.142]    [Pg.153]    [Pg.154]    [Pg.740]    [Pg.742]    [Pg.112]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Adsorption and Electro-Oxidation of CO at Pure Platinum Catalysts

Adsorption catalyst

Adsorption of Catalyst at the Interface

Adsorption of Hydrogen on Metal Catalysts Otto Beeck

Adsorption of Nitrogen on Iron Catalysts

Effect of the Catalyst Redox State on NO2 Adsorption

Metal catalysts adsorption of pyridine

© 2024 chempedia.info