Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption amino acid

Silica Adsorption Amino acids 1. BuOH/AcOH/HjO (4 1 1) 2. PhOH/HjO (3 1) Ninhydrin or densitometer Two-way development... [Pg.74]

Alumina Adsorption Amino acids BuOH/EtOH/HjO Ninhydrin ... [Pg.74]

Other immobilization methods are based on chemical and physical binding to soHd supports, eg, polysaccharides, polymers, glass, and other chemically and physically stable materials, which are usually modified with functional groups such as amine, carboxy, epoxy, phenyl, or alkane to enable covalent coupling to amino acid side chains on the enzyme surface. These supports may be macroporous, with pore diameters in the range 30—300 nm, to facihtate accommodation of enzyme within a support particle. Ionic and nonionic adsorption to macroporous supports is a gentle, simple, and often efficient method. Use of powdered enzyme, or enzyme precipitated on inert supports, may be adequate for use in nonaqueous media. Entrapment in polysaccharide/polymer gels is used for both cells and isolated enzymes. [Pg.291]

Advantages of chromatography for protein separations include the large number of possible chemical interactions resulting from variations in the frequency and distribution of the amino-acid side chains on the surfaces of the proteins, and the availability of a wide array of different adsorption media. Chromatography has high efficiency and selectivity, and adequate scale-up potential. [Pg.2061]

These controlled experiments eliminate adsorption as an explanation for the elution order of neutral amino acids from PolyHEA. Perhaps this order does... [Pg.259]

The great leap forward for chromatography was the seminal work of Martin and Synge (7) who in 1941 replaced countercurrent liquid-liquid extraction by partition chromatography for the analysis of amino acids from wool. Martin also realized that the mobile phase could be a gas rather than a liquid, and with James first developed (8) gas chromatography (GC) in 1951, following the gas-phase adsorption-chromatographic separations of Phillips (9). [Pg.3]

The use of UV adsorption enhancers as reagents that introduce a UV chromaphore into a molecule that is transparent in the UV wavelength range has already been briefly discussed. The two most common reagents are the phenyl and methyl isothiocyanates. These reagents react with amino acids to form thiodantoins. [Pg.241]

Extensive studies of stereoselective polymerization of epoxides were carried out by Tsuruta et al.21 s. Copolymerization of a racemic mixture of propylene oxide with a diethylzinc-methanol catalyst yielded a crystalline polymer, which was resolved into optically active polymers216 217. Asymmetric selective polymerization of d-propylene oxide from a racemic mixture occurs with asymmetric catalysts such as diethyzinc- (+) bomeol218. This reaction is explained by the asymmetric adsorption of monomers onto the enantiomorphic catalyst site219. Furukawa220 compared the selectivities of asymmetric catalysts composed of diethylzinc amino acid combinations and attributed the selectivity to the bulkiness of the substituents in the amino acid. With propylene sulfide, excellent asymmetric selective polymerization was observed with a catalyst consisting of diethylzinc and a tertiary-butyl substituted a-glycol221,222. ... [Pg.18]

In 1975, the fabrication of a chiral electrode by permanent attachment of amino acid residues to pendant groups on a graphite surface was reported At the same time, stimulated by the development of bonded phases on silica and aluminia surfaces the first example of derivatized metal surfaces for use as chemically modified electrodes was presented. A silanization technique was used for covalently binding redox species to hydroxy groups of SnOj or Pt surfaces. Before that time, some successful attemps to create electrode surfaces with deliberate chemical properties made use of specific adsorption techniques... [Pg.51]

A review on TLC and PLC of amino adds, peptides, and proteins is presented in the works by Bhushan [24,25]. Chromatographic behavior of 24 amino acids on silica gel layers impregnated tiraryl phosphate and tri-n-butylamine in a two-component mobile phase (propanol water) of varying ratios has been studied by Sharma and coworkers [26], The effect of impregnation, mobile phase composition, and the effect of solubility on hRf of amino acids were discussed. The mechanism of migration was explained in terms of adsorption on impregnated silica gel G and the polarity of the mobile phase used. [Pg.211]

Membranes offer a format for interaction of an analyte with a stationary phase alternative to the familiar column. For certain kinds of separations, particularly preparative separations involving strong adsorption, the membrane format is extremely useful. A 5 x 4 mm hollow-fiber membrane layered with the protein bovine serum albumin was used for the chiral separation of the amino acid tryptophan, with a separation factor of up to 6.6.62 Diethey-laminoethyl-derivatized membrane disks were used for high-speed ion exchange separations of oligonucleotides.63 Sulfonated membranes were used for peptide separations, and reversed-phase separations of peptides, steroids, and aromatic hydrocarbons were accomplished on C18-derivatized membranes. [Pg.65]

Formulation strategies for stabilization of proteins commonly include additives such as other proteins (e.g., serum albumin), amino acids, and surfactants to minimize adsorption to surfaces. Modification of protein structure to enhance stability by genetic engineering may also be feasible, as well as chemical modification such as formation of a conjugate with polyethylene glycol. [Pg.405]

Palchetti I, Mascini M (2005) Electrochemical Adsorption Technique for Immobilization of Single-Stranded Oligonucleotides onto Carbon Screen-Printed Electrodes. 261 27-43 Pascal R, Boiteau L, Commeyras A (2005) From the Prebiotic Synthesis of a-Amino Acids Towards a Primitive Translation Apparatus for the Synthesis of Peptides. 259 69-122 Paulo A, see Santos I (2005) 252 45-84 Perez EM, see Leigh DA (2006) 265 185-208 Perret F, see Coleman AW (2007) 277 31-88 Perron H, see Coleman AW (2007) 277 31-88 Pianowski Z, see Winssinger N (2007) 278 311-342 Piestert F, see Gansauer A (2007) 279 25-52... [Pg.263]

Polar organic compounds such as amino acids normally do not polymerize in water because of dipole-dipole interactions. However, polymerization of amino acids to peptides may occur on clay surfaces. For example, Degens and Metheja51 found kaolinite to serve as a catalyst for the polymerization of amino acids to peptides. In natural systems, Cu2+ is not very likely to exist in significant concentrations. However, Fe3+ may be present in the deep-well environment in sufficient amounts to enhance the adsorption of phenol, benzene, and related aromatics. Wastes from resinmanufacturing facilities, food-processing plants, pharmaceutical plants, and other types of chemical plants occasionally contain resin-like materials that may polymerize to form solids at deep-well-injection pressures and temperatures. [Pg.801]

Esters represent an important class of chemical compounds with applications as solvents, plasticizers, flavors and fragrances, pesticides, medicinals, surfactants, chemical intermediates, and monomers for resins. Recently, esters of amino acids have attracted attention regarding their use as biobased surfactants with excellent adsorption and aggregation properties, low toxicity, and broad biological activity. [Pg.373]


See other pages where Adsorption amino acid is mentioned: [Pg.542]    [Pg.532]    [Pg.347]    [Pg.2063]    [Pg.2063]    [Pg.349]    [Pg.249]    [Pg.254]    [Pg.255]    [Pg.258]    [Pg.260]    [Pg.260]    [Pg.808]    [Pg.17]    [Pg.188]    [Pg.338]    [Pg.348]    [Pg.349]    [Pg.421]    [Pg.71]    [Pg.81]    [Pg.81]    [Pg.50]    [Pg.265]    [Pg.268]    [Pg.399]    [Pg.409]    [Pg.702]    [Pg.91]    [Pg.399]    [Pg.495]    [Pg.17]    [Pg.23]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Acids adsorption

Adsorption Analysis of Amino Acid

Adsorption analysis of amino acid mixtures

© 2024 chempedia.info