Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric-selective polymerization

Asymmetric synthesis selective electrolysis electrochemical polymerization... [Pg.137]

Anionic Catalysis Several bulky methacrylates afford highly isotactic, optically active polymers having a single-handed helical structure by asymmetric polymerization. The effective polymerization mechanism is mainly anionic but free-radical catalysis can also lead to helix-sense-selective polymerization. The anionic initiator systems can also be applied for the polymerization of bulky acrylates and acrylamides. The one-handed helical polymethacrylates show an excellent chiral recognition ability when used as a chiral stationary phase for high-performance liquid chromatography (HPLC) [97,98]. [Pg.769]

Introduction of relatively weak functional groups, such as carbonyl, hydroxyl, nitro, amide, etc., in the nanochannels of PCPs would affect the monomer alignment, which may lead to precision control of stereoselectivity and regioselectivity of the resulting polymers. In particular, PCPs with either helical or chiral structures on the pore surface are of intense interest in chemistry and such porous solids are potentially useful to find applications in enantioselective sorption/separation and catalysis [34, 38 0, 42, 45]. Of considerable interest is the use of the chiral channels to affect asymmetric polymerizations such as asymmetric selective polymerization of racemic monomers as well as asymmetric polymerization of prochiral monomers, which may give helical polymer conformations. [Pg.159]

Let us consider a case where the selectivity by propagating end-type asymmetric polymerization of the monomer does not lead to pseudo asymmetry of the main chain e. g. 1-methylbutadiene (i.e. 1,3-pentadiene). [Pg.160]

Extensive studies of stereoselective polymerization of epoxides were carried out by Tsuruta et al.21 s. Copolymerization of a racemic mixture of propylene oxide with a diethylzinc-methanol catalyst yielded a crystalline polymer, which was resolved into optically active polymers216 217. Asymmetric selective polymerization of d-propylene oxide from a racemic mixture occurs with asymmetric catalysts such as diethyzinc- (+) bomeol218. This reaction is explained by the asymmetric adsorption of monomers onto the enantiomorphic catalyst site219. Furukawa220 compared the selectivities of asymmetric catalysts composed of diethylzinc amino acid combinations and attributed the selectivity to the bulkiness of the substituents in the amino acid. With propylene sulfide, excellent asymmetric selective polymerization was observed with a catalyst consisting of diethylzinc and a tertiary-butyl substituted a-glycol221,222. ... [Pg.18]

Interestingly, Reggelin et al. [147] prepared helical chiral polymers by helix-sense selective anionic polymerization of methacrylates, using an asymmetric base mixture as initiator (Scheme 61). [Pg.142]

Oheme and co-workers investigated335 in an aqueous micellar system the asymmetric hydrogenation of a-amino acid precursors using optically active rhodium-phosphine complexes. Surfactants of different types significantly enhance both activity and enantioselectivity provided that the concentration of the surfactants is above the critical micelle concentration. The application of amphiphilized polymers and polymerized micelles as surfactants facilitates the phase separation after the reaction. Table 2 shows selected hydrogenation results with and without amphiphiles and with amphiphilized polymers for the reaction in Scheme 61.335... [Pg.119]

When a chiral ansa-type zirconocene/MAO system was used as the catalyst precursor for polymerization of 1,5-hexadiene, an main-chain optically active polymer (68% trans rings) was obtained84-86. The enantioselectivity for this cyclopolymerization can be explained by the fact that the same prochiral face of the olefins was selected by the chiral zirconium center (Eq. 12) [209-211]. Asymmetric hydrogenation, as well as C-C bond formation catalyzed by chiral ansa-metallocene 144, has recently been developed to achieve high enantioselectivity88-90. This parallels to the high stereoselectivity in the polymerization. [Pg.34]

Peroxidases have been used very frequently during the last ten years as biocatalysts in asymmetric synthesis. The transformation of a broad spectrum of substrates by these enzymes leads to valuable compounds for the asymmetric synthesis of natural products and biologically active molecules. Peroxidases catalyze regioselective hydroxylation of phenols and halogenation of olefins. Furthermore, they catalyze the epoxidation of olefins and the sulfoxidation of alkyl aryl sulfides in high enantioselectivities, as well as the asymmetric reduction of racemic hydroperoxides. The less selective oxidative coupHng of various phenols and aromatic amines by peroxidases provides a convenient access to dimeric, oligomeric and polymeric products for industrial applications. [Pg.103]

The chiral ligand was in all cases (2S,4S)-N-tert-butoxycarbonyl-4-diphenylphos-phino-2-diphenylphosphinomethylpyrrolidine (BPPM) and the catalyst was formed in an in situ system of [Rh(COD)2] BFT The asymmetric hydrogenation is well investigated in organic solvents like methanol, but the presence of water usually causes loss of activity and enantioselectivity because of the low solubility of both the catalyst and the substrate in water [27, 29]. The addition of low-molecular surfactants or commercially available polymeric amphiphiles increases the activity (here given as time of consumption of half the stoichiometric volume of hydrogen, t/2) as well as the enantioselectivity [4]. Tab. 6.1 summarizes selected experiments with different polymeric amphiphiles. [Pg.282]

Fig. 9.19 Preparation of polymer brushes on solid surfaces by a) chemical grafting of end-functionalized linear polymers or selective adsorption of asymmetric block copolymers and b) by surface-initiated polymerization (SIP) using initiator functions on the solid surface. The depicted SAM bearing to-functionalities... Fig. 9.19 Preparation of polymer brushes on solid surfaces by a) chemical grafting of end-functionalized linear polymers or selective adsorption of asymmetric block copolymers and b) by surface-initiated polymerization (SIP) using initiator functions on the solid surface. The depicted SAM bearing to-functionalities...
A stereoelective (252, 299, 300) or asymmetric selective (298) or enantioasymmetric (301) polymerization where one of the enantiomers polymerizes in a preferential way in an ideal case 50% of the monomer is converted into a pure optically active polymer while the remainder is recovered as nonreacted compound also in the pure enantiomeric form (e.g., R -t- nS). ... [Pg.74]

With the bisoxazoline hgand (S)-Phbox and CuCl, the asymmetric oxidative couphng of 2-naphthol and hydroxy-2-naphthoates resulted in an asymmetrically substituted 2,2 -binaphthol with ee s of up to 65% [260]. On the basis of the previous results obtained with this catalyst system, the asymmetric oxidative cross-coupling polymerization of 2,3-dihydroxynaphthalene [261] and methyl 6,6 -dihydroxy-2,2 -binaphthalene-7,7 -dicarboxylate [262] as well as the copolymerization of 6,6 -dihydroxy-2,2 -binaphthalene and dihexyl 6,6 -dihydroxy-2,2 -binaphthalene-7,7 -dicarboxylate with Cu diamine catalysts were carried out imder aerobic conditions, using O2 as the oxidant, and a cross-coupling selectivity of 99% was achieved [263]. [Pg.65]

Fig. 23.4 Organophilic pervaporation (PV) for in situ recovery of volatile flavour compounds from bioreactors. The principle of PV can be viewed as a vacuum distillation across a polymeric barrier (membrane) dividing the liquid feed phase from the gaseous permeate phase. A highly aroma enriched permeate is recovered by freezing the target compounds out of the gas stream. As a typical silicone membrane, an asymmetric poly(octylsiloxane) (POMS) membrane is exemplarily depicted. Here, the selective barrier is a thin POMS layer on a polypropylene (PP)/poly(ether imide) (PEI) support material. Several investigations of PV for the recovery of different microbially produced flavours, e.g. 2-phenylethanol [119], benzaldehyde [264], 6-pentyl-a-pyrone [239], acetone/buta-nol/ethanol [265] and citronellol/geraniol/short-chain esters [266], have been published... Fig. 23.4 Organophilic pervaporation (PV) for in situ recovery of volatile flavour compounds from bioreactors. The principle of PV can be viewed as a vacuum distillation across a polymeric barrier (membrane) dividing the liquid feed phase from the gaseous permeate phase. A highly aroma enriched permeate is recovered by freezing the target compounds out of the gas stream. As a typical silicone membrane, an asymmetric poly(octylsiloxane) (POMS) membrane is exemplarily depicted. Here, the selective barrier is a thin POMS layer on a polypropylene (PP)/poly(ether imide) (PEI) support material. Several investigations of PV for the recovery of different microbially produced flavours, e.g. 2-phenylethanol [119], benzaldehyde [264], 6-pentyl-a-pyrone [239], acetone/buta-nol/ethanol [265] and citronellol/geraniol/short-chain esters [266], have been published...

See other pages where Asymmetric-selective polymerization is mentioned: [Pg.565]    [Pg.62]    [Pg.757]    [Pg.774]    [Pg.358]    [Pg.4]    [Pg.77]    [Pg.129]    [Pg.134]    [Pg.5]    [Pg.644]    [Pg.271]    [Pg.48]    [Pg.757]    [Pg.769]    [Pg.774]    [Pg.3]    [Pg.275]    [Pg.75]    [Pg.19]    [Pg.1037]    [Pg.454]    [Pg.166]    [Pg.255]    [Pg.499]    [Pg.158]    [Pg.327]    [Pg.452]    [Pg.628]    [Pg.98]    [Pg.184]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Asymmetric selection

Polymerization asymmetric

Polymerization selective

© 2024 chempedia.info