Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption nonionic

Other immobilization methods are based on chemical and physical binding to soHd supports, eg, polysaccharides, polymers, glass, and other chemically and physically stable materials, which are usually modified with functional groups such as amine, carboxy, epoxy, phenyl, or alkane to enable covalent coupling to amino acid side chains on the enzyme surface. These supports may be macroporous, with pore diameters in the range 30—300 nm, to facihtate accommodation of enzyme within a support particle. Ionic and nonionic adsorption to macroporous supports is a gentle, simple, and often efficient method. Use of powdered enzyme, or enzyme precipitated on inert supports, may be adequate for use in nonaqueous media. Entrapment in polysaccharide/polymer gels is used for both cells and isolated enzymes. [Pg.291]

For a metal/solution interface, the pcz is as informative as the electron work function is for a metal/vacuum interface.6,15 It is a property of the nature of the metal and of its surface structure (see later discussion) it is sensitive to the presence of impurities. Its value can be used to check the cleanliness and perfection of a metal surface. Its position determines the potential ranges of ionic and nonionic adsorption, and the region where double-layer effects are possible in electrode kinetics.8,10,16... [Pg.5]

Inorganic Ions. Because of electrostatic attraction, positive ions are attracted to negatively charged surfaces and have a higher concentration near the surface than in the bulk. Negative ions are repelled from the negative surface and have a lower concentration near that surface. Ions which are very strongly bound (/zADS > kT) are in the Stem layer, whereas those that can move into and out of the ionic atmosphere (nADS < kT) are in the Helmholtz layer. The effect of ionic attraction or repulsion from the surface is to enhance or reduce the nonionic adsorption coefficient ... [Pg.547]

A few studies of nonionic adsorption from methanoF and ethanoF have been reported. Adsorption of organics is weaker from alcoholic solution than from water as would be expected since the interaction of the solute with an organic solvent should be stronger than with water. [Pg.736]

In this section we eonsider a doublet consisting of dro plets with a nonionic adsorption layer. The closest separation between two droplet surfaces hQexceeds the double thickness of file adsorption layer (2hg). As a crude approximation Eq can be identified with 2h. In the case of small surfactant molecules 2hg 2 nm. [Pg.82]

VI. NONIONIC AND MULTIPLE ION ADSORPTION EQUATIONS A. Nonionic Adsorption Equations... [Pg.72]

After reviewing various earlier explanations for an adsorption maximum, Trogus, Schechter, and Wade [244] proposed perhaps the most satisfactory one so far (see also Ref. 243). Qualitatively, an adsorption maximum can occur if the surfactant consists of at least two species (which can be closely related) what is necessary is that species 2 (say) preferentially forms micelles (has a lower CMC) relative to species 1 and also adsorbs more strongly. The adsorbed state may also consist of aggregates or hemi-micelles, and even for a pure component the situation can be complex (see Section XI-6 for recent AFM evidence of surface micelle formation and [246] for polymeric surface micelles). Similar adsorption maxima found in adsorption of nonionic surfactants can be attributed to polydispersity in the surfactant chain lengths [247], Surface-active impuri-... [Pg.487]

The method of action of the polymers is thought to be encapsulation of drill cuttings and exposed shales on the borehole wall by the nonionic materials, and selective adsorption of anionic polymers on positively charged sites of exposed clays which limits the extent of possible swelling. The latter method appears to be tme particularly for certain anionic polymers because of the low concentrations that can be used to achieve shale protection (8). [Pg.182]

In the 1990s, the thmst of surfactant flooding work has been to develop surfactants which provide low interfacial tensions in saline media, particularly seawater require less cosurfactant are effective at low concentrations and exhibit lower adsorption on rock. Nonionic surfactants such as alcohol ethoxylates, alkylphenol ethoxylates (215) and propoxylates (216), and alcohol propoxylates (216) have been evaluated for this appHcation. More recently, anionic surfactants have been used (216—230). [Pg.194]

The most commonly used emulsifiers are sodium, potassium, or ammonium salts of oleic acid, stearic acid, or rosin acids, or disproportionate rosin acids, either singly or in mixture. An aLkylsulfate or aLkylarenesulfonate can also be used or be present as a stabilizer. A useful stabilizer of this class is the condensation product of formaldehyde with the sodium salt of P-naphthalenesulfonic acid. AH these primary emulsifiers and stabilizers are anionic and on adsorption they confer a negative charge to the polymer particles. Latices stabilized with cationic or nonionic surfactants have been developed for special apphcations. Despite the high concentration of emulsifiers in most synthetic latices, only a small proportion is present in the aqueous phase nearly all of it is adsorbed on the polymer particles. [Pg.254]

Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

In a study of the adsorption of soap and several synthetic surfactants on a variety of textile fibers, it was found that cotton and nylon adsorbed less surfactant than wool under comparable conditions (59). Among the various surfactants, the cationic types were adsorbed to the greatest extent, whereas nonionic types were adsorbed least. The adsorption of nonionic surfactants decreased with increasing length of the polyoxyethylene chain. When soaps were adsorbed, the fatty acid and the aLkaU behaved more or less independently just as they did when adsorbed on carbon. The adsorption of sodium oleate by cotton has been shown independently to result in the deposition of acid soap (a composition intermediate between the free fatty acid and the sodium salt), if no heavy-metal ions are present in the system (60). In hard water, the adsorbate has large proportions of lime soap. [Pg.532]

Synthetic, nonionic polymers generally elute with little or no adsorption on TSK-PW columns. Characterization of these polymers has been demonstrated successfully using four types of on-line detectors. These include differential refractive index (DRI), differential viscometry (DV), FALLS, and MALLS detection (4-8). Absolute molecular weight, root mean square (RMS) radius of gyration, conformational coefficients, and intrinsic viscosity distributions have... [Pg.562]

Nonionic functional groups provide steric repulsion and improved particulate adsorption. Each of the various polymers, phosphonates, and other organics employed have combinations of functions. The overall molecules may act as ... [Pg.442]

Adsorption and retention studies of surfactants to sand in high-salinity reservoirs showed no differences between nonionics and ether carboxylates [185— 187] low retention and a positive behavior for good oil recovery has been found. [Pg.343]

The inhibition of Streptococcus mutans adherence to hydroxyapatite with combinations of alkyl phosphates and nonionic surfactants was tested. Seven alkyl phosphate derivatives and three nonionic surfactants were examined for their ability to inhibit the adherence of 3H-labeled cells of S. mutans to hydroxyapatite treated with buffer or parotid saliva. No compound by itself effectively hindered binding of bacteria to hydroxyapatite. A combination of certain of the alkyl phosphates, notably a disodium phosphate of 1-octadecanol, and nonionic surfactant at a 1 1 molar ratio gave a strong inhibition of S. mutans adherence. Treatment with this combination resulted in 98% reduction of adherence. Adsorption of the two types of surface-active agents alone and in combinations was studied using 14C-labeled agents. Electrophoretic measure-... [Pg.610]

The potentials of zero charge considered in this chapter are those in the absence of specific adsorption of ionic as well as nonionic species. There has been no attempt to review the enormous amount of data on the effect of specific adsorption on Ea+j, except for the few cases where extrapolation back to zero specific adsorption has been used as a more accurate way to determine <7-o- However, specific adsorption is difficult to relate quantitatively to the structure of interfacial water as well as to the effect of the metal. [Pg.190]

Mingelgrin U, Gerstl Z. 1983. Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. J Environ Qual 12 1-11. [Pg.222]

The colloid probe technique was first applied to the investigation of surfactant adsorption by Rutland and Senden [83]. They investigated the effect of a nonionic surfactant petakis(oxyethylene) dodecyl ether at various concentrations for a silica-silica system. In the absence of surfactant they observed a repulsive interaction at small separation, which inhibited adhesive contact. For a concentration of 2 X 10 M they found a normalized adhesive force of 19 mN/m, which is small compared to similar measurements with SEA and is probably caused by sufactant adsorption s disrupting the hydration force. The adhesive force decreased with time, suggesting that the hydrophobic attraction was being screened by further surfactant adsorption. Thus the authors concluded that adsorption occurs through... [Pg.49]

Adsorption and ion exchange chromatography are well-known methods of LC. In adsorption, one frequently selects either silica or alumina as stationary phase for separation of nonionic, moderately polar substances (e.g. alcohols, aromatic heterocycles, etc.). This mode works best in the fractionation of classes of compounds and the resolution of isomeric substances (J). Ion exchange, on the other hand, is applicable to the separation of ionic substances. As to be discussed later, this mode has been well developed as a tool for analysis of urine constituents (8). [Pg.227]

Figures 6, 7 and 9 show calibration curves using two multi-column combinations and illustrate the degree of "optimization obtained in this system. The mobile phases for Figures 6 and 7 contained 0.025 g polyethylene oxide and ion exclusion and adsorption effects should therefore be largely eliminated. Figure 6 shows that reasonably good resolution can be obtained with a combination of five columns but does exhibit some loss of peak separation at the low cuid high MW ends. In Figure 7 the effect of adding a sixth column of small pore size is illustrated and it is seen that resolution at the low MW end is thereby somewhat improved. This calibration curve is effectively linear with a change of slope at 500,000 MW. It should provide a useful aqueous GPC system for MW and MWD determination of nonionic polyacrylamides. Figures 6, 7 and 9 show calibration curves using two multi-column combinations and illustrate the degree of "optimization obtained in this system. The mobile phases for Figures 6 and 7 contained 0.025 g polyethylene oxide and ion exclusion and adsorption effects should therefore be largely eliminated. Figure 6 shows that reasonably good resolution can be obtained with a combination of five columns but does exhibit some loss of peak separation at the low cuid high MW ends. In Figure 7 the effect of adding a sixth column of small pore size is illustrated and it is seen that resolution at the low MW end is thereby somewhat improved. This calibration curve is effectively linear with a change of slope at 500,000 MW. It should provide a useful aqueous GPC system for MW and MWD determination of nonionic polyacrylamides.
Principles of Adsorption Chromatography The Separation of Nonionic Organic Compounds, Lloyd R. Snyder Multicomponent Chromatography Theory of Interference,... [Pg.430]

Surfactants greatly improve the performance of trans-cinnamaldehyde as a corrosion inhibitor for steel in HCl [741,1590,1591]. They act by enhancing the adsorption at the surface. Increased solubility or dispersibility of the inhibitor is an incidental effect. N-dodecylpyridinium bromide is effective in this aspect far below its critical micelle concentration, probably as a result of electrostatic adsorption of the monomeric form of N-dodecylpyridinium bromide. This leads to the formation of a hydrophobic monolayer, which attracts the inhibitor. On the other hand, an ethoxylated nonylphenol, a nonionic surfactant, acts by incorporating the inhibitor into micelles, which themselves adsorb on the steel surface and facilitate the adsorption of trans-cinnamaldehyde. [Pg.87]


See other pages where Adsorption nonionic is mentioned: [Pg.547]    [Pg.532]    [Pg.99]    [Pg.101]    [Pg.3138]    [Pg.400]    [Pg.58]    [Pg.264]    [Pg.627]    [Pg.109]    [Pg.4]    [Pg.537]    [Pg.74]    [Pg.75]    [Pg.75]    [Pg.242]    [Pg.547]    [Pg.532]    [Pg.99]    [Pg.101]    [Pg.3138]    [Pg.400]    [Pg.58]    [Pg.264]    [Pg.627]    [Pg.109]    [Pg.4]    [Pg.537]    [Pg.74]    [Pg.75]    [Pg.75]    [Pg.242]    [Pg.547]    [Pg.534]    [Pg.534]    [Pg.535]    [Pg.381]    [Pg.560]    [Pg.128]    [Pg.609]    [Pg.211]   
See also in sourсe #XX -- [ Pg.27 ]

See also in sourсe #XX -- [ Pg.72 , Pg.73 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 ]




SEARCH



Adsorption isotherm of nonionic surfactants

Adsorption of Nonionic Compounds

Adsorption of Nonionic Contaminants

Adsorption of Nonionic Surfactants onto Hydrophilic Surfaces

Adsorption of nonionic surfactants

Nonionic resin adsorption

Nonionic surfactant adsorption

Nonionic: adsorption bonding

Nonionizing

© 2024 chempedia.info