Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Additives modelling effects

The main objective of a structure model is to produce an image ol a molecule that invokes 3D information although it is physically two-dimensional. Additional lighting effects (such as shadows on the objects of the structure) may enhance... [Pg.131]

To overcome this problem, they proposed a working-fluid heat-addition model. This model implies that the gas dynamics are not computed on the basis of real values for heat of combustion and specific heat ratio of the combustion products, but on the basis of effective values. Effective values for the heat addition and product specific heat ratios were determined for six different stoichiometric fuel-air mixtures. Using this numerical model, Luckritz (1977) and Strehlow et al. (1979) systematically registered the properties of blast generated by spherical, constant-velocity deflagrations over a large range of flame speeds. [Pg.107]

Kohli et al. [27], for instance, showed that the tensile modulus of a highly drawn PC-TLCP composite could be modeled effectively by the simple additivity rule of mixtures, while the compression molded composite samples with a spherical TLCP morphology had moduli according to the inverse rule. In both cases, the tensile modulus of the TLCP (Ei,c) itself was assumed to be a constant value determined from a tensile test of the pure TLCP samples. But whether or not the dispersed TLCP fibers and deformed droplets have the same modulus as the bulk TLCP samples remains a question. [Pg.698]

With these goals in mind, several investigators have undertaken to set down quantitative expressions which will predict propellant burning rates in terms of the chemical and physical properties of the individual propellant constituents and the characteristics of the ingredient interactions. As in the case of ignition, the basic approach taken in these studies must consider the different types of propellants currently in use and must make allowances for their differences. In the initial combustion studies, the effort was primarily concerned with the development of combustion models for double-base propellants. With the advent of the heterogeneous composite propellants, these studies were redirected to the consideration of the additional mixing effects. [Pg.31]

Additional model studies are needed to explore the effects of CaCOa compensation. Examination of the extent of the CaCOa preservation in deep-sea sediments is needed to verify model predictions of how the [COa] ion content of deep-sea water has changed with time. [Pg.401]

Two other publications on Ir (73 keV) Mossbauer spectroscopy of complex compounds of iridium have been reported by Williams et al. [291,292]. In their first article [291], they have shown that the additive model suggested by Bancroft [293] does not account satisfactorily for the partial isomer shift and partial quadrupole splitting in Ir(lll) complexes. Their second article [292] deals with four-coordinate formally lr(l) complexes. They observed, like other authors on similar low-valent iridium compounds [284], only small differences in the isomer shifts, which they attributed to the interaction between the metal-ligand bonds leading to compensation effects. Their interpretation is supported by changes in the NMR data of the phosphine ligands and in the frequency of the carbonyl stretching vibration. [Pg.328]

The vesicant vinorelbine is structurally similar to vincristine and may cause many of the same side effects as vincristine. While this vesicant is administered intravenously over 6 to 10 minutes, patients should be counseled about neuropathy, ileus, and myelosuppression. The pharmacokinetics of vinorelbine are best described by a three-compartment model, with an a half-life of 2 to 6 minutes, a 3 half-life of 1.9 hours, and a y half-life of 40 hours. Vinorelbine has shown efficacy in the treatment of breast cancer and non-small cell lung cancer. Additional side effects include myelosuppression, paresthesias, and mild nausea and vomiting. [Pg.1287]

A simple additive model is normally used to predict the total pressure drop. The total is taken as the sum of the pressure drop calculated for the flow of vapour through the dry plate (the dry plate drop hj) the head of clear liquid on the plate (hw + how) and a term to account for other, minor, sources of pressure loss, the so-called residual loss hr. The residual loss is the difference between the observed experimental pressure drop and the simple sum of the dry-plate drop and the clear-liquid height. It accounts for the two effects the energy to form the vapour bubbles and the fact that on an operating plate the liquid head will not be clear liquid but a head of aerated liquid froth, and the froth density and height will be different from that of the clear liquid. [Pg.575]

Calculations of forces may be improved in several ways. One is to pursue efforts towards the development of accurate classical, atomic-level force fields. A promising extension along these lines is to add nonadditive polarization effects to the usual pairwise additive description of interatomic interactions. This has been attempted in the past [35-39], but has not brought the expected and long-awaited improvements. This is not so much because polarization effects are not important, or pairwise additive models can account for them accurately in an average sense in all, even highly anisotropic environments. Instead, it seems more likely that the previously developed nonadditive potentials were not sufficiently accurate to offer an enhanced description of those systems in which induction phenomena play a crucial role. [Pg.510]

The draft-tube airlift bioreactor was studied using water-in-kerosene microemulsions [263], The effect of draft tube area vs. the top-section area on various parameters was studied. The effect of gas flow rates on recirculation and gas carry over due to incomplete gas disengagement were studied [264], Additionally, the effect of riser to downcomer volume was also studied. The effect of W/O ratio and viscosity was tested on gas hold-up and mass transfer coefficient [265], One limitation of these studies was the use of plain water as the aqueous phase in the cold model. The absence of biocatalyst or any fermentation broth from the experiments makes these results of little value. The effect of the parameters studied will greatly depend on the change in viscosity, hold-up, phase distribution caused due to the presence of biocatalyst, such as IGTS8, due to production of biosurfactants, etc., by the biocatalyst. Thus, further work including biocatalyst is necessary to truly assess the utility of the draft-tube airlift bioreactor for biodesulfurization. [Pg.129]

The main idea of the model is that in order for the electrically conductive additive to effectively fulfill its functions, it must form a closed cluster (skeleton of the interconnected carbon particles, which is the conducting pass in electrode matrix). Once the sufficient conductive network was formed, further considerable increase of additive content is not needed, as it leads to decrease in the percentage of the electrochemically active constituent in the electrode. [Pg.316]

Only the effects of the three-body interaction term Vabc are truly cooperative effects in a trimer, although properties may of course also change with cluster size in a strictly pairwise additive model, where Vabc = 0- The formalism may easily be extended to larger clusters and indeed three body effects tend to be more important in larger clusters than in trimers [68]. [Pg.9]

Rafler et al. showed in an early work [102] that the diffusion coefficient of EG varies with the overall effective polycondensation rate and they proposed a dependency of the diffusion coefficient on the degree of polycondensation. This dependency is obvious, because the diffusion coefficient is proportional to the reciprocal of the viscosity which increases by four orders of magnitude during polycondensation from approximately 0.001 Pas (for Pn = 3) to 67Pas (for Pn = 100) at 280 °C. In later work, Rafler et al. [103, 104, 106] abandoned the varying diffusion coefficient and instead added a convective mass-transport term to the material balance of EG and water. The additional model parameter for convection in the polymer melt and the constant diffusion coefficient were evaluated by data fitting. [Pg.80]

The quantum chemical studies have not reached a unanimous conclusion. The more sophisticated procedures predict that in some captodative substituted systems an additive or a slightly more than additive substituent effect is possible. The calculations, particularly those of Leroy, have also contributed to the belief that the study of substituent effects requires the consideration of their influence in the ground and final states of the model system. [Pg.172]

Examples of the model fit for shoot weight and shoot length are shown in Figures 7.5 and 7.6, respectively. The models fit the data well, particularly at the low concentrations where risk-based decisions are typically focused. The benefit of the additional model parameter, Wq i, is evident by the floor effect seen in the raw data at higher concentrations. Both data-rich and relatively data-poor data sets followed the shape of the model curve. [Pg.138]

High cell densities are not only a prerequisite for high productivity additionally an effective on-line control and modeling of the bioprocesses is necessary. For industrial applications, optical measurement methods are more attractive because they are non-invasive and more robust. The potential of the BioView sensor for on-line bioprocess monitoring and control was tested. For high-cell-density cultivation of Escherichia coli, maintaining aerobic conditions and removal of inhibitory by-products are essential. Acetic acid is known to be one of the critical metabolites. Information about changes in the cell metabolism and the time of important process operations is accessible on-line for optimization... [Pg.32]


See other pages where Additives modelling effects is mentioned: [Pg.741]    [Pg.1400]    [Pg.833]    [Pg.355]    [Pg.86]    [Pg.374]    [Pg.75]    [Pg.142]    [Pg.1292]    [Pg.73]    [Pg.14]    [Pg.390]    [Pg.47]    [Pg.57]    [Pg.229]    [Pg.179]    [Pg.876]    [Pg.223]    [Pg.635]    [Pg.114]    [Pg.305]    [Pg.83]    [Pg.267]    [Pg.293]    [Pg.290]    [Pg.305]    [Pg.167]    [Pg.159]    [Pg.23]    [Pg.405]    [Pg.449]    [Pg.119]    [Pg.153]    [Pg.42]    [Pg.242]   
See also in sourсe #XX -- [ Pg.109 , Pg.110 ]




SEARCH



Additive model

Additives modeling

Additivity model

© 2024 chempedia.info