Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity Estimation methods

A.ssessmentofUNIFy C. UNIFAC is a method to predict the activity of binary Hquid solutions in the absence of all data except stmctural information. Because state-of-the-art real fluid estimation methods are empirical or semi-empirical, the use of more data results in improved activity estimation. [Pg.252]

Hctivity Coefficients. Most activity coefficient property estimation methods are generally appHcable only to pure substances. Methods for properties of multicomponent systems are more complex and parameter fits usually rely on less experimental data. The primary group contribution methods of activity coefficient estimation are ASOG and UNIEAC. Of the two, UNIEAC has been fit to more combinations of groups and therefore can be appHed to a wider variety of compounds. Both methods are restricted to organic compounds and water. [Pg.253]

Multicomponent Mixtures No simple, practical estimation methods have been developed for predicting multicomponent hquid-diffusion coefficients. Several theories have been developed, but the necessity for extensive activity data, pure component and mixture volumes, mixture viscosity data, and tracer and binaiy diffusion coefficients have significantly limited the utihty of the theories (see Reid et al.). [Pg.600]

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]

Another estimation method of mixture flashpointe was sugg ed by Gmehling (note p.63). The method uses the forecast technique of activity coefficients of iiquid mixtures called UNIFAC that would therefore enable calculation of the vapour pressure of the mixtures and, thanks to Le Chdtelier equation, calculate the temperature to which the mixture has to be heated so that its equilibrium concentration reaches the lower explosive limit. [Pg.69]

Quantitative Stmcture-Activity Relationships (QSARs) are estimation methods developed and used in order to predict certain effects or properties of chemical substances, which are primarily based on the structure of the substance. They have been developed on the basis of experimental data on model substances. Quantitative predictions are usually in the form of a regression equation and would thus predict dose-response data as part of a QSAR assessment. QSAR models are available in the open literature for a wide range of endpoints, which are required for a hazard assessment, including several toxicological endpoints. [Pg.63]

It is very often observed that during a purification process the differences increase between the real amounts of a protein and the values obtained by any method, e.g., total enzyme activity, because the measured signal produced by a protein mixture differs from that of a pure protein. Furthermore, the amount of a given protein determined by a distinct protocol differs from the expected amount by portioning, as shown in Table 1.1. To avoid additional mistakes with the already uncertain process, the protein estimation method should not be changed during a purification process. [Pg.2]

SMART (Solvent Measurement, Assessment, and Revamping Tool) is a software program that allows assessment of solvents used for batch processing based on both empirical data and property estimation methods (Modi et al., 1996). This system includes a new conjugation based method for the estimation of reaction rates in solution, which is based on the concept that the absolute reaction rate coefficient can be obtained from a function dependent on the change in molecular charge distribution between reactants and activated complex (Sherman et al., 1998). Table 9.2 provides a list of solvent substitution resources available on the World Wide Web. [Pg.294]

Grain, C. F., Activity Coefficient . In Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds, W. J. Lyman, W. F. Reehl and D. H. Rosenblatt, Eds., McGraw-Hill, New York, NY, 1982b, pp. 11-1 - 11-53. [Pg.1226]

The subtractive phase is followed by an optimization phase where simulated annealing is used to improve the predictive power of the hypotheses. Small changes are made to the models and they are scored according to the accuracy in activity estimation. Finally, the simplest models that correctly estimate activity are selected (Occam s Razor) and the top N solutions are reported to the user. The method has been described in more detail elsewhere [39, 40]. [Pg.32]

Significant effort has been devoted to activity coefficient estimation methods in the fields of chemical engineering, environmental and pharmaceutical research because the necessary experimental data for many substances are not available and are difficult to measure. While there are numerous activity coefficient estimation methods for... [Pg.94]

The liquid phase and polymer phase activity coefficients were combined from different methods to see if better estimation accuracy could be obtained, since some estimation methods were developed for estimation of activity coefficients in polymers (e.g. GCFLORY, ELBRO-FV) and others have their origins in liquid phase activity coefficient estimation (e.g. UNIFAC). The UNIFAC liquid phase activity coefficient combined with GCFLORY (1990 and 1994 versions) and ELBRO-FV polymer activity coefficients were shown to be the combinations giving the best estimations out of all possible combinations of the different methods. Also included in Table 4-3 are estimations of partition coefficients made using the semi-empirical group contribution method referred to as the Retention Indices Method covered in the next section. [Pg.100]

Estimate the polymer/liquid partition coefficient for cis-3-hexenol between a package with a LDPE material food contact layer. The package contains a food system whose partitioning characteristics can be simulated using 100 % ethanol at 25 °C. Use the UNIFAC activity coefficient estimation method and assume a dilute solution (x, = w, 0.00001). [Pg.105]

Park, J.H., Carr, P.W. Predictive ability of the MOSCED and UNIFAC activity coefficient estimation methods. Anal. Chem., 1987, 59 2596-2602. [Pg.123]

Active Oxygen Method for Fat Stability (AOM) (Cd 12-57) determines the time (in hours) for a sample of fat or oil to attain a predetermined peroxide value (PV) under the conditions of the test. The method is used to estimate the comparative oxidative stability of fats and oils. The method has been placed in surplus, in favor of Cd 12b-92 (Oil Stability Index), but retains official status and is still used in domestic industry. p-Anisidine Value (AV) (Cd 18-90) determines the amount of aldehydes (principally 2-alkenals and 2,4-dienals) in animal and vegetable fats and oils. These are degradation products of peroxides, which are not removed by bleaching. Some fats and oils chemists propose increased use of this method in purchase specifications. Bleaching Test for Soybean Oil (Cc 8e-s63) determines the color of a sample of soybean oil after treatment with a specified bleaching earth. Specific methods exist for other oil species. [Pg.1648]

When experimental equilibrium data on nonideal mixtures are not available, methods such as those based on Derr and Deal s analytical solution of groups (ASOG) [28] or the UNIFAC correlation (discussed in Example 3.4) may be used. Activity-coefficient estimation methods are also available in various thermodynamic-data packages, such as Chemshare. Further discussion may be found in Prausnitz [3] and in Reid, Prausnitz, and Sherwood [1]. [Pg.43]

Using the value of a determined above, the results of the standard assay made initially to check the enzyme activity, the assay in part C, and the given concentration of the enzyme stock solution in g L , calculate the specific activity of the enzyme— that is, the number of micromoles of sucrose hydrolyzed per minute per gram of enzyme present. (The specific activity of an enzyme preparation is of course a function of the purity of the enzyme. As inactive protein is removed from the preparation, the specific activity will rise. When the specific activity can no longer be increased by any purification method, a homogeneous enzyme preparation may have been achieved but proof of this depends on other criteria.) The exact chemical composition of invertase is still unknown, but its molar mass has been estimated at 100,000 g mol Combining this datum with your calculated specific activity, estimate the turnover number for the enzyme. [Pg.281]

Thus, probabilistic biological activity prediction methods can be used for both estimation of adverse/toxic effects in molecules under study and for finding the multi-targeted ligands, which might yield drugs of superior clinical value compared with monotargeted formulations ... [Pg.199]

In the estimation methods discussed so far the quantities estimated have either been the rate constant or the pre-exponential factor in the Arrhenius expression. Methods for estimating the activation energy of bimolecular reactions are much less developed. Theoretical prediction, at the level required, is beyond current computational techniques except in some exceptional, simple cases. However, there have been empirical attempts to relate the activation energy for a series of related reactions e.g., H abstraction by methyl radicals from hydrocarbons, to the thermodynamics of the process. [Pg.280]

As an active sampling method, the volumetric air sampler aspirates a known volume of process air, capturing microorganisms into or onto a nutrient agar medium, a liquid, or a filter. Microorganisms are developed and quantified as an estimate of CPUs present in the sampled environment per cubic foot of air (or other volumetric measurement). The quantitative principles of volumetric (active) air sampling may be expressed by... [Pg.2308]

The antioxidant efficiency of phenolic acids, as determined by the accelerated autooxidation of methyl linoleate and scavenging of the free radical 2,2-diphenyl-1-picrylhydrazyl (141) ° methods, was found to be inversely proportional to the maximal detector response potential in the voltammetric determination of these compounds. No similar correlation was found for the flavonoids . A good correlation was found between the O—H bond dissociation energy of a phenolic compound and its effectiveness as antioxidant, expressed as the rate constant of free radical scavenging . The bond dissociation energy of the phenol O—H bond was estimated by a three-dimensional quantitative structme-activity relationship method incorporating electron densities computed using the Austin Method 1 (AMI) followed by correlation of the... [Pg.982]

Many properties of pure polymers (and of polymer solutions) can be estimated with group contributions (GC). Examples of properties for which (GC) methods have been developed are the density, the solubility parameter, the melting and glass transition temperatures, as well as the surface tension. Phase equilibria for polymer solutions and blends can also be estimated with GC methods, as we discuss in Section 16.4 and 16.5. Here we review the GC principle, and in the following sections we discuss estimation methods for the density and the solubility parameter. These two properties are relevant for many thermodynamic models used for polymers, e.g., the Hansen and Flory-Hug-gins models discussed in Section 16.3 and the free-volume activity coefficient models discussed in Section 16.4. [Pg.685]

The new RMG software combines high-accuracy chemistry estimation methods (including methods for automatically identifying chemically-activated reaction paths) with the extensible 21st century functional group tree data model described above, so it is now much easier for users to add, modify, and document the chemical assumptions that underlie the models than it was using the previous generation of model-construction software, and the software does not need to be modified or recompiled when new chemistry is added. [Pg.29]


See other pages where Activity Estimation methods is mentioned: [Pg.345]    [Pg.16]    [Pg.13]    [Pg.444]    [Pg.92]    [Pg.51]    [Pg.220]    [Pg.174]    [Pg.15]    [Pg.15]    [Pg.95]    [Pg.5]    [Pg.1570]    [Pg.588]    [Pg.472]    [Pg.3240]    [Pg.284]    [Pg.9]    [Pg.601]    [Pg.312]    [Pg.45]    [Pg.84]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Activation methods

Estimating methods

Estimation methods

© 2024 chempedia.info