Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activities to Observe

A checklist or form should be used for recording observations. This form should record what the worker has been observed doing, when the observation was made, and what action or actions were taken or planned as a result. The checklist should include key points of the particular job (see Table 14.2). [Pg.204]

If a JSA/JH A is available, it should be used as the basic information and guideline for the observation. The supervisor should watch each step of the job and be alert to [Pg.204]

Observation completed by James McCoy Title Shift Foreman [Pg.205]

The worker was dressed appropriately for the job. He wore comfortable fitting mamlenance uniform. [Pg.205]

Worker needed to wear additional PPE Safety glasses, steel-toed shoes, coveralls, rubber work gloves. [Pg.205]


Management should outline the purpose and types of job safety observations, including how to select a job or task for planned safety observations, how to prepare for a planned safety observation, how to use a checklist of activities to observe unsafe procedures, what the employees role in the observation process is, what occurs after the observation, and how to deal with unsafe behavior and performance. [Pg.211]

Apart from the thoroughly studied aqueous Diels-Alder reaction, a limited number of other transformations have been reported to benefit considerably from the use of water. These include the aldol condensation , the benzoin condensation , the Baylis-Hillman reaction (tertiary-amine catalysed coupling of aldehydes with acrylic acid derivatives) and pericyclic reactions like the 1,3-dipolar cycloaddition and the Qaisen rearrangement (see below). These reactions have one thing in common a negative volume of activation. This observation has tempted many authors to propose hydrophobic effects as primary cause of ftie observed rate enhancements. [Pg.27]

Surprisingly, the highest catalytic activity is observed in TFE. One mi t envisage this to be a result of the poor interaction between TFE and the copper(II) cation, so that the cation will retain most of its Lewis-acidity. In the other solvents the interaction between their electron-rich hetero atoms and the cation is likely to be stronger, thus diminishing the efficiency of the Lewis-acid catalysis. The observation that Cu(N03)2 is only poorly soluble in TFE and much better in the other solvents used, is in line with this reasoning. [Pg.54]

If acetoxylation were a conventional electrophilic substitution it is hard to understand why it is not more generally observed in nitration in acetic anhydride. The acetoxylating species is supposed to be very much more selective than the nitrating species, and therefore compared with the situation in (say) toluene in which the ratio of acetoxylation to nitration is small, the introduction of activating substituents into the aromatic nucleus should lead to an increase in the importance of acetoxylation relative to nitration. This is, in fact, observed in the limited range of the alkylbenzenes, although the apparently severe steric requirement of the acetoxylation species is a complicating feature. The failure to observe acetoxylation in the reactions of compounds more reactive than 2-xylene has been attributed to the incursion of another mechan-104... [Pg.104]

Carbonyiation of butadiene gives two different products depending on the catalytic species. When PdCl is used in ethanol, ethyl 3-pentenoate (91) is obtained[87,88]. Further carbonyiation of 3-pentenoate catalyzed by cobalt carbonyl affords adipate 92[89], 3-Pentenoate is also obtained in the presence of acid. On the other hand, with catalysis by Pd(OAc)2 and Ph3P, methyl 3,8-nonadienoate (93) is obtained by dimerization-carbonylation[90,91]. The presence of chloride ion firmly attached to Pd makes the difference. The reaction is slow, and higher catalytic activity was observed by using Pd(OAc) , (/-Pr) ,P, and maleic anhydride[92]. Carbonyiation of isoprcne with either PdCi or Pd(OAc)2 and Ph,P gives only the 4-methyl-3-pentenoate 94[93]. [Pg.437]

Organic fluorine compounds were first prepared in the latter part of the nineteenth century. Pioneer work by the Belgian chemist, F. Swarts, led to observations that antimony(Ill) fluoride reacts with organic compounds having activated carbon—chlorine bonds to form the corresponding carbon—fluorine bonds. Preparation of fluorinated compounds was faciUtated by fluorinations with antimony(Ill) fluoride containing antimony(V) haUdes as a reaction catalyst. [Pg.266]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

Joly observed elevated "Ra activities in deep-sea sediments that he attributed to water column scavenging and removal processes. This hypothesis was later challenged with the hrst seawater °Th measurements (parent of "Ra), and these new results conhrmed that radium was instead actively migrating across the marine sediment-water interface. This seabed source stimulated much activity to use radium as a tracer for ocean circulation. Unfortunately, the utility of Ra as a deep ocean circulation tracer never came to full fruition as biological cycling has been repeatedly shown to have a strong and unpredictable effect on the vertical distribution of this isotope. [Pg.48]

In the low frequency region, the calculations predict nanotube-specifiic Eig and E g modes around 116 cm and 377 cm respectively, for (10,10) armchair naiiotubes, but their intensities are expected to be lower than that for the A g mode. However, these Eig and E2g modes are important, since they also show a diameter dependence of their mode frequencies. In the very low frequency region below 30 cm a strong low frequency Raman-active E2g mode is expected. However, it is difficult to observe Raman lines in the very low frequency region, where the background Rayleigh scattered is very strong. [Pg.81]

Typically, visitors have little or no reason to enter exclusion zones. An observation deck or other area out of the exclusion zone can usually allow any visitor (with or without the aid of binoculars) to observe work activities as necessary. Video cameras have been used successfully to show... [Pg.187]

The acylation of enamines derived from cyclic ketones, which can lead to the acyl ketone or ring expansion (692-694), was studied by NMR and mass spectroscopic analysis of the products (695,696). In a comparative study of the rates of diphenylketene addition to olefins, a pronounced activation was observed in enamines (697). Enamine N- and C-acylation products were obtained from reactions of Schiff s bases (698), vinylogous urethanes (699), cyanamides (699), amides (670,700), and 2-benzylidene-3-methylbenzothiazoline (672) with acid chlorides, anhydrides, and dithio-esters (699). [Pg.392]

Danishefsky et al. were probably the first to observe that lanthanide complexes can catalyze the cycloaddition reaction of aldehydes with activated dienes [24]. The reaction of benzaldehyde la with activated conjugated dienes such as 2d was found to be catalyzed by Eu(hfc)3 16 giving up to 58% ee (Scheme 4.16). The ee of the cycloaddition products for other substrates was in the range 20-40% with 1 mol% loading of 16. Catalyst 16 has also been used for diastereoselective cycloaddition reactions using chiral 0-menthoxy-activated dienes derived from (-)-menthol, giving up to 84% de [24b,c] it has also been used for the synthesis of optically pure saccharides. [Pg.163]

It has been established that both the 17 hydroxy androgens rind estrogens, when administered orally, are quickly converted (o water-soluble inactive metabolites by intestinal bacteria, usually by reactions at the 17 position. It is this inactivation process that is largely responsible for the low-order oral potency observed with these agents. Incorporation of an additional car-l)on atom at the 17 position should serve to make the now tertiary alcohol less susceptible to metabolic attack and thus potentially confer oral activity to these derivatives. [Pg.161]

In general, most of the methods used to analyze the chemical nature of the ionic liquid itself, as described in Chapter 4, should also be applicable, in some more sophisticated form, to study the nature of a catalyst dissolved in the ionic liquid. For attempts to apply spectroscopic methods to the analysis of active catalysts in ionic liquids, however, it is important to consider three aspects a) as with catalysis in conventional media, the lifetime of the catalytically active species will be very short, making it difficult to observe, b) in a realistic catalytic scenario the concentration of the catalyst in the ionic liquid will be very low, and c) the presence and concentration of the substrate will influence the catalyst/ionic liquid interaction. These three concerns alone clearly show that an ionic liquid/substrate/catalyst system is quite complex and may be not easy to study by spectroscopic methods. [Pg.226]

A related study used the air- and moisture-stable ionic liquids [RMIM][PFg] (R = butyl-decyl) as solvents for the oligomerization of ethylene to higher a-olefins [49]. The reaction used the cationic nickel complex 2 (Figure 7.4-1) under biphasic conditions to give oligomers of up to nine repeat units, with better selectivity and reactivity than obtained in conventional solvents. Recycling of the catalyst/ionic liquid solution was possible with little change in selectivity, and only a small drop in activity was observed. [Pg.328]


See other pages where Activities to Observe is mentioned: [Pg.199]    [Pg.204]    [Pg.170]    [Pg.175]    [Pg.199]    [Pg.204]    [Pg.170]    [Pg.175]    [Pg.2704]    [Pg.644]    [Pg.658]    [Pg.503]    [Pg.256]    [Pg.516]    [Pg.4]    [Pg.246]    [Pg.245]    [Pg.252]    [Pg.211]    [Pg.28]    [Pg.308]    [Pg.296]    [Pg.133]    [Pg.110]    [Pg.317]    [Pg.180]    [Pg.480]    [Pg.534]    [Pg.4]    [Pg.10]    [Pg.56]    [Pg.80]    [Pg.205]    [Pg.54]    [Pg.16]    [Pg.89]    [Pg.344]   


SEARCH



Observed activity

© 2024 chempedia.info