Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active phase, catalysis

In the early days of catalysis the porous high surface area support was usually thought to be inert. It soon became obvious, however, that the catalytic activity, or turnover frequency, of a catalytic reaction on a given active phase is quite often seriously affected both by the crystallite size and by the material of the support. [Pg.488]

Support materials are commonly u.sed in heterogeneous catalysis. Their major function is to maximize the dispersion of the active phase by providing a large surface area over which the active phase can be distributed. In this way the cataly.st material is shaped into a form suitable for use in technical reactors. Supports are not always chemically inert they can also show certain catalytic activity and often they act as a stabilizer for the actual active phase. A number of materials are u.sed as catalyst supports. Table 3.2 gives an overview. [Pg.71]

In any catalyst selection procedure the first step will be the search for an active phase, be it a. solid or complexes in a. solution. For heterogeneous catalysis the. second step is also deeisive for the success of process development the choice of the optimal particle morphology. The choice of catalyst morphology (size, shape, porous texture, activity distribution, etc.) depends on intrinsic reaction kinetics as well as on diffusion rates of reactants and products. The catalyst cannot be cho.sen independently of the reactor type, because different reactor types place different demands on the catalyst. For instance, fixed-bed reactors require relatively large particles to minimize the pressure drop, while in fluidized-bed reactors relatively small particles must be used. However, an optimal choice is possible within the limits set by the reactor type. [Pg.84]

With the advance of three-way catalysis for pollution control, used mainly in automobile catalytic conversion but also for the purification of gas exhausts from stationary sources, a need has arisen to develop a basic understanding of the reactions associated with the reduction of nitrogen oxides on transition metal catalytic surfaces [1,2]. That conversion is typically carried out by using rhodium-based catalysts [3], which makes the process quite expensive. Consequently, extensive effort has been placed on trying to minimize the amount of the metal needed and/or to replace it with an alternatively cheaper and more durable active phase. However, there is still ample room for improvement in this direction. By building a molecular-level picture of theprocesses involved,... [Pg.67]

The main focus of the following considerations is on catalysis using inorganic materials. Similar considerations come into play for catalysis with molecular compounds as catalytic components of course, issues related to diffusion in porous systems are not applicable there as molecular catalysts, unless bound or attached to a solid material or contained in a polymeric entity, lack a porous system which could restrict mass transport to the active center. It is evident that the basic considerations for mass transport-related phenomena are also valid for liquid and liquid-gas-phase catalysis with inorganic materials. [Pg.391]

According to the U.S. National Nanotechnology Institute, nanotechnology encompasses research and development to synthesize, control, and manipulate stmctures, devices, and systems of novel properties and functions because of their size at the atomic, molecular, or macromolecular levels in the length scale ranging from approximately 1 to 100 nanometers. Indeed, this length scale is of particular relevance to heterogeneous catalysis, where the active sites are small crystallites or domains of the active phase. The reaction typically involves atom-molecule interactions, and the active sites are placed in or on an extended solid where the access paths to the active sites are tens to hundreds of nanometers. The issue of access path is a familiar territory in... [Pg.4]

It is well established that commercially important supported noble metal catalysts contain small metal crystallites that are typically smaller than a few nanometers. The surface of these crystallites is populated by different types of metal atoms depending on their locations on the surface, such as comers, edges, or terraces. In structure sensitive reactions, different types of surface metal atoms possess quite different properties. For example, in the synthesis of ammonia from nitrogen and hydrogen, different surface crystallographic planes of Fe metal exhibit very different activities. Thus, one of the most challenging aspects in metal catalysis is to prepare samples containing metal particles of uniform shape and size. If the active phase is multicomponent, then it is also desirable to prepare particles of uniform composition. [Pg.5]

Dendritic catalysts can be recycled by using techniques similar to those applied with their monomeric analogues, such as precipitation, two-phase catalysis, and immobilization on insoluble supports. Furthermore, the large size and the globular structure of the dendrimer can be utilized to facilitate catalyst-product separation by means of nanofiltration. Nanofiltration can be performed batch wise or in a continuous-flow membrane reactor (CFMR). The latter offers significant advantages the conditions such as reactant concentrations and reactant residence time can be controlled accurately. These advantages are especially important in reactions in which the product can react further with the catalytically active center to form side products. [Pg.73]

There are reports of numerous examples of dendritic transition metal catalysts incorporating various dendritic backbones functionalized at various locations. Dendritic effects in catalysis include increased or decreased activity, selectivity, and stability. It is clear from the contributions of many research groups that dendrimers are suitable supports for recyclable transition metal catalysts. Separation and/or recycle of the catalysts are possible with these functionalized dendrimers for example, separation results from precipitation of the dendrimer from the product liquid two-phase catalysis allows separation and recycle of the catalyst when the products and catalyst are concentrated in two immiscible liquid phases and immobilization of the dendrimer in an insoluble support (such as crosslinked polystyrene or silica) allows use of a fixed-bed reactor holding the catalyst and excluding it from the product stream. Furthermore, the large size and the globular structure of the dendrimers enable efficient separation by nanofiltration techniques. Nanofiltration can be performed either batch wise or in a continuous-flow membrane reactor (CFMR). [Pg.146]

The oxides represent one of the most important and widely employed classes of solid catalysts, either as active phases or as supports. They are used for both their acid-base and ReDox properties and constitute the largest family of catalysts in heterogeneous catalysis [76]. [Pg.204]

Most of the adsorbents used in the adsorption process are also useful to catalysis, because they can act as solid catalysts or their supports. The basic function of catalyst supports, usually porous adsorbents, is to keep the catalytically active phase in a highly dispersed state. It is obvious that the methods of preparation and characterization of adsorbents and catalysts are very similar or identical. The physical structure of catalysts is investigated by means of both adsorption methods and various instrumental techniques derived for estimating their porosity and surface area. Factors such as surface area, distribution of pore volumes, pore sizes, stability, and mechanical properties of materials used are also very important in both processes—adsorption and catalysis. Activated carbons, silica, and alumina species as well as natural amorphous aluminosilicates and zeolites are widely used as either catalyst supports or heterogeneous catalysts. From the above, the following conclusions can be easily drawn (Dabrowski, 2001) ... [Pg.44]

Pseudoliquid-phase catalysis (bulk type I catalysis) was reported in 1979, and bulk type II behavior in 1983. In the 1980s, several new large-scale industrial processes started in Japan based on applications of heteropoly catalysts that had been described before (5, 6, 72) namely, oxidation of methacro-lein (1982), hydration of isobutylene (1984), hydration of n-butene (1985), and polymerization of tetrahydrofuran (1987). In addition, there are a few small- to medium-scale processes (9, 10). Thus the level of research activity in heteropoly catalysis is very high and growing rapidly. [Pg.116]

The versatile solubility properties of the crown ethers and cryptands are important in two of their major applications, phase transfer catalysis and anion activation. Phase transfer catalysis involves the transport of guest species from one phase to another. The two phases in question are usually two immiscible liquids (liquid-liquid phase transport). In practice, this usually means the use of a... [Pg.183]

Verbicky, J.W. and O Neil, E.A. (1985) Chiral phase-transfer catalysis. Enantioselective alkylation of racemic alcohols with a nonfunctionalized optically active phase-transfer catalyst. [Pg.186]

One strong point of Raman spectroscopy for research in catalysis is that the technique is highly suitable for in-situ studies. The spectra of adsorbed species interfere weakly with signals from the gas phase, enabling studies to be performed under reaction conditions. A second advantage is that typical supports such as silica and alumina are weak Raman scatterers, with the consequence that adsorbed species can be measured at wavenumbers as low as 50 cm-1. These benefits render Raman spectroscopy a powerful tool for studying catalytically active phases on a support. [Pg.239]

The application of carbons in catalysis is mainly as support for active phases in various reactions. Besides a wide variety of noble metal-carbon systems for hydrogenation reactions and fuel cell applications, the large-scale application in the synthesis of vinyl acetate and vinyl chloride are important technical applications... [Pg.139]


See other pages where Active phase, catalysis is mentioned: [Pg.258]    [Pg.259]    [Pg.15]    [Pg.228]    [Pg.89]    [Pg.152]    [Pg.67]    [Pg.205]    [Pg.150]    [Pg.118]    [Pg.459]    [Pg.39]    [Pg.40]    [Pg.1436]    [Pg.389]    [Pg.132]    [Pg.257]    [Pg.331]    [Pg.285]    [Pg.388]    [Pg.201]    [Pg.190]    [Pg.613]    [Pg.109]    [Pg.111]    [Pg.258]    [Pg.259]    [Pg.21]    [Pg.44]    [Pg.493]    [Pg.154]    [Pg.166]    [Pg.113]    [Pg.16]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Catalysis activated

Catalysis activity

© 2024 chempedia.info