Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile/isoprene rubber

Elastomers include natural rubber (polyisoprene), synthetic polyisoprene, styrene-butadiene rubbers, butyl rubber (isobutylene-isoprene), polybutadiene, ethylene-propylene-diene (EPDM), neoprene (polychloroprene), acrylonitrile-butadiene rubbers, polysulfide rubbers, polyurethane rubbers, crosslinked polyethylene rubber and polynorbomene rubbers. Typically in elastomer mixing the elastomer is mixed with other additives such as carbon black, fillers, oils/plasticizers and accelerators/antioxidants. [Pg.408]

Synthetic rubbers. Common name of rubbers manufactured by polymerization of monomers. Main types acrylonitrile/butadiene rubber, butadiene rubber, butyl rubber, chloroprene rubber, ethylene/propylene rubber, isoprene rubber, sty-rene/butadiene rubber. [Pg.28]

Nanocomposites with silica nanoparticles have been prepared in poly-dimethylsiloxanes, butadiene, styrene-butadiene, acrylonitrile-butadiene, acrylic and ethylene-propylene diene rubber. Nanocomposites in isoprene rubbers are here examined. In a nutshell, these nanocomposites were prepared adopting the three methods summarized above and nano-silica was reported to promote the mechanical reinforcement of poly (isoprene) matrices, less that CB but more than conventional silica, with lower viscosity. [Pg.87]

IR- isoprene synthetic (IR is also known as cis-polyisoprene) NBR - nitrile-butadiene (NBR is also known as acrylonitrile butadiene rubber or, as nitrile butadiene rubber) ... [Pg.14]

Ishida et reported melt blending of PLA with four types of common rubbers, ethylene-propylene copolymer (EPM), ethylene-acrylic rubber (EAM), acrylonitrile-butadiene rubber (NBR) and isoprene rubber (IR), to toughen PLA. All blends showed separated phase morphology where the elastomer phase was homogeneously distributed in the form of small droplets in the continuous PLA phase. Izod impact testing showed that toughening was achieved only when PLA was blended with NBR, which showed the smallest rubber particle size in the blends. In addition, the interfacial tension between both phases, PLA and NBR, was the lowest. [Pg.202]

Diene Types The diene elastomers are based on polymers prepared from butadiene, isoprene, their derivatives and copolymers. The oldest elastomer, natural rubber (polyisoprene), is in this class (see Section 9.2). Polybutadiene, polychloroprene, styrene-butadiene rubber (SBR), and acrylonitrile-butadiene rubber (NBR) are also in this class. [Pg.481]

Phosgene Propylene oxide Titanium dioxide Vinylidene chloride Acetaldehyde Vinyl chloride Ethanolamines Isoprene rubber Bisphenol Ethyl chloride Methyl chloride Neoprene Trichloroethylene Perchloroethylene Vinyl chloride Acrylonitrile Acrylonitrile Dimethyl terephthalate Formaldehyde Methyl chloride... [Pg.846]

Emulsion polymerization is the most important process for production of elastic polymers based on butadiene. Copolymers of butadiene with styrene and acrylonitrile have attained particular significance. Polymerized 2-chlorobutadiene is known as chloroprene rubber. Emulsion polymerization provides the advantage of running a low viscosity during the entire time of polymerization. Hence the temperature can easily be controlled. The polymerizate is formed as a latex similar to natural rubber latex. In this way the production of mixed lattices is relieved. The temperature of polymerization is usually 50°C. Low-temperature polymerization is carried out by the help of redox systems at a temperature of 5°C. This kind of polymerization leads to a higher amount of desired trans-1,4 structures instead of cis-1,4 structures. Chloroprene rubber from poly-2-chlorbutadiene is equally formed by emulsion polymerization. Chloroprene polymerizes considerably more rapidly than butadiene and isoprene. Especially in low-temperature polymerization emulsifiers must show good solubility and... [Pg.602]

The isoprene units in the copolymer impart the ability to crosslink the product. Polystyrene is far too rigid to be used as an elastomer but styrene copolymers with 1,3-butadiene (SBR rubber) are quite flexible and rubbery. Polyethylene is a crystalline plastic while ethylene-propylene copolymers and terpolymers of ethylene, propylene and diene (e.g., dicyclopentadiene, hexa-1,4-diene, 2-ethylidenenorborn-5-ene) are elastomers (EPR and EPDM rubbers). Nitrile or NBR rubber is a copolymer of acrylonitrile and 1,3-butadiene. Vinylidene fluoride-chlorotrifluoroethylene and olefin-acrylic ester copolymers and 1,3-butadiene-styrene-vinyl pyridine terpolymer are examples of specialty elastomers. [Pg.20]

Butadiene and isoprene have two double bonds, and they polymerize to polymers with one double bond per monomeric unit. Hence, these polymers have a high degree of unsaturation. Natural rubber is a linear cis-polyisoprene from 1,4-addition. The corresponding trans structure is that of gutta-percha. Synthetic polybutadienes and polyisoprenes and their copolymers usually contain numerous short-chain side branches, resulting from 1,2-additions during the polymerization. Polymers and copolymers of butadiene and isoprene as well as copolymers of butadiene with styrene (GR-S or Buna-S) and copolymers of butadiene with acrylonitrile (GR-N, Buna-N or Perbunan) have been found to cross-link under irradiation. [Pg.346]

Over 5.5 billion pounds of synthetic rubber is produced annually in the United States. The principle elastomer is the copolymer of butadiene (75%) and styrene (25) (SBR) produced at an annual rate of over 1 million tons by the emulsion polymerization of butadiene and styrene. The copolymer of butadiene and acrylonitrile (Buna-H, NBR) is also produced by the emulsion process at an annual rate of about 200 million pounds. Likewise, neoprene is produced by the emulsion polymerization of chloroprene at an annual rate of over 125,000 t. Butyl rubber is produced by the low-temperature cationic copolymerization of isobutylene (90%) and isoprene (10%) at an annual rate of about 150,000 t. Polybutadiene, polyisoprene, and EPDM are produced by the anionic polymerization of about 600,000, 100,000, and 350,000 t, respectively. Many other elastomers are also produced. [Pg.554]

Several polymers based on 1,3-dienes are used as elastomers. These include styrene-1,3-butadiene (SBR), styrene-1,3-butadiene terpolymer with an unsaturated carboxylic acid (carboxylated SBR), acrylonitrile-1,3-butadiene (NBR or nitrile rubber) (Secs. 6-8a, 6-8e), isobutylene-isoprene (butyl rubber) (Sec. 5-2i-l), and block copolymers of isoprene or... [Pg.699]

Other commercial copolymers which are typically random are those of vinyl chloride and vinyl acetate (Vinylite), isobutylene and isoprene (butyl rubber), styrene and butadiene (SBR), and acrylonitrile and butadiene (NBR). The accepted nomenclature is illustrated by EP, which is designated poly-ethylene-co-propylene the co designating that the polymer is a copolymer. When the copolymers are arranged in a regular sequence in the chains, i.e., ABAB, the copolymer is called an alternating copolymer. A copolymer consisting of styrene and maleic anhydride (SMA) is a typical alternating copolymer. [Pg.10]

Some dicyanate-containing compositions, which contain rubbers as flexibilizing components, were described in the preceding chapters. There were also patent applications made, where dicyanates were claimed as additives in typical rubber mixtures. In such mixtures, butadiene-acrylonitrile rubber is used. The main components of such binders are nitrile rubber, BPA/DC and methylethylketone. They contain, moreover, Zn octoate and Fe203 [144] or ZnO and sulfur [145]. Isoprene-acryloni-trile rubber, BPA/DC prepolymer, Zn octoate, DABCO and benzoyl peroxide were dissolved in a methylethylketone-dimethylformamide mixture. Glass fiber was impregnated with the obtained solution [146]. [Pg.57]

Property Butyl/halobutyl (isobutylene- isoprene copolymer) N atur al/Isoprene (cis-1,4-polyisoprene) Nitrile (butadiene- Sdicone Neoprene acrylonitrile (polydi-(polycbloroprene) copolymer) metbysiloxane) Fluoro- elastomers (fluoro- rubber) Uretbane (polyesterisocyanate) EPDM (etbylene Butadiene propylenediene (cis-polybuta-monomer) diene) ... [Pg.1478]

Vulcanization is an industrial process applied to various polymers from the class of unsaturated polyhydrocarbons. The major practical use of vulcanized elastomers is the tire industry. Tires are made from various polymer blends, including natural rubber, typically between 20 and 50%. The other polymers used in various blends that can be vulcanized include copolymers such as poly(styrene-co-1,3-butadiene) or SBR, poly(acrylonitrile-co-1,3-butadiene-co-styrene) or ABS, poly(isobutylene-co-isoprene), poly(ethylene-co-propylene-co-1,4-hexadiene, etc. [Pg.455]


See other pages where Acrylonitrile/isoprene rubber is mentioned: [Pg.604]    [Pg.369]    [Pg.72]    [Pg.604]    [Pg.369]    [Pg.72]    [Pg.873]    [Pg.738]    [Pg.40]    [Pg.738]    [Pg.584]    [Pg.64]    [Pg.626]    [Pg.97]    [Pg.98]    [Pg.238]    [Pg.114]    [Pg.230]    [Pg.164]    [Pg.887]    [Pg.588]    [Pg.271]    [Pg.572]    [Pg.318]    [Pg.23]    [Pg.223]    [Pg.169]    [Pg.412]    [Pg.90]    [Pg.375]    [Pg.450]    [Pg.1007]   


SEARCH



Acrylonitrile rubber

Isoprene rubber

© 2024 chempedia.info