Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile-cellulose

The acrylonitrile cellulose grafts were examined by differential thermal analysis, solvent extraction and solubility studies. They conclude from their data that the unextractable portion is present mainly in grafted form. [Pg.142]

Figure 10. Poly(acrylonitrile)-cellulose copolymer using y-radiation (simultaneous steps procedure)... Figure 10. Poly(acrylonitrile)-cellulose copolymer using y-radiation (simultaneous steps procedure)...
DOT CLASSIFICATION 8 Label Corrosive SAFETY PROFILE Poison by intraperitoneal route. Moderately toxic by ingestion, skin contact, subcutaneous, intravenous, and intramuscular routes. A corrosive irritant to skin, eyes, and mucous membranes. Human mutation data reported. Flammable when exposed to heat or flame. A powerful base. Reacts violently with acetic acid, acetic anhydride, acrolein, acrylic acid, acrylonitrile, cellulose, chlorosulfonic acid, epichlorohydrin, HCl, HF, mesityl oxide, HNO3, oleum, H2SO4, p-propiolactone, vinyl acetate. To fight fire, use foam, alcohol foam, dry chemical. When heated to decomposition it emits toxic fumes of NOx. See also AMINES. [Pg.598]

Plastics that are commonly processed by extrusion include acrylics (polymethacrylates, polyacrylates) and copolymers of acrylonitrile cellulosics (cellulose acetate, propionate, and acetate butyrate) polyethylene (low and high density) polypropylene polystyrene vinyl plastics polycarbonates and nylons. The material properties and extrusion properties have been reviewed by Whelan and Dunning.Additives that may be included to modify or enhance proper-ties include lubricants and antislip agents to assist processing during extrusion plasticizers to achieve softness and flexibility stabilizers and antioxidants to retard or prevent degradation and dyes and pigments. [Pg.1720]

Polycarbonate acrylonitrile-butadiene-styrene alloy Allyl-diglycol- carbonate polymer Diallyl phthalate molding Cellulose acetate Cellulose-acetate-butyrate resin... [Pg.1030]

Other Polymers. Besides polycarbonates, poly(methyl methacrylate)s, cycfic polyolefins, and uv-curable cross-linked polymers, a host of other polymers have been examined for their suitabiUty as substrate materials for optical data storage, preferably compact disks, in the last years. These polymers have not gained commercial importance polystyrene (PS), poly(vinyl chloride) (PVC), cellulose acetobutyrate (CAB), bis(diallylpolycarbonate) (BDPC), poly(ethylene terephthalate) (PET), styrene—acrylonitrile copolymers (SAN), poly(vinyl acetate) (PVAC), and for substrates with high resistance to heat softening, polysulfones (PSU) and polyimides (PI). [Pg.162]

Acrylic ESTER POLYMERS Acrylonitrile POLYMERS Cellulose esters). Engineering plastics (qv) such as acetal resins (qv), polyamides (qv), polycarbonate (qv), polyesters (qv), and poly(phenylene sulfide), and advanced materials such as Hquid crystal polymers, polysulfone, and polyetheretherketone are used in high performance appHcations they are processed at higher temperatures than their commodity counterparts (see Polymers containing sulfur). [Pg.136]

Membrane stmcture is a function of the materials used (polymer composition, molecular weight distribution, solvent system, etc) and the mode of preparation (solution viscosity, evaporation time, humidity, etc). Commonly used polymers include cellulose acetates, polyamides, polysulfones, dynels (vinyl chloride-acrylonitrile copolymers) and poly(vinyhdene fluoride). [Pg.294]

The important thermoplastics used commercially are polyethylene, acrylonitrile butadiene styrene (ABS), polyvinyl chloride (PVC), cellulose acetate butyrate (CAB), vinylidene chloride (Saran), fluorocarbons (Teflon, Halar, Kel-F, Kynar), polycarbonates, polypropylene, nylons, and acetals (Delrin). Important thermosetting plasttcs are... [Pg.2457]

Cellulose acetate butyrate, f Acrylonitrile butadiene styrene polymer. [Pg.2463]

The important features of rigidity and transparency make the material competitive with polystyrene, cellulose acetate and poly(methyl methacrylate) for a number of applications. In general the copolymer is cheaper than poly(methyl methacrylate) and cellulose acetate, tougher than poly(methyl methacrylate) and polystyrene and superior in chemical and most physical properties to polystyrene and cellulose acetate. It does not have such a high transparency or such food weathering properties as poly(methyl methacrylate). As a result of these considerations the styrene-acrylonitrile copolymers have found applications for dials, knobs and covers for domestic appliances, electrical equipment and car equipment, for picnic ware and housewares, and a number of other industrial and domestic applications with requirements somewhat more stringent than can be met by polystyrene. [Pg.441]

This reaction is utilized by Burrows et al. [70] to photoinitiate grafting of acrylamide, acrylic acid, methacrylamide, and acrylonitrile on cellulose triacetate in acidic aqueous solution. [Pg.257]

By using this technique acrylamide, acrylonitrile, and methyl acrylate were grafted onto cellulose [20]. In this case, oxidative depolymerization of cellulose also occurs and could yield short-lived intermediates [21]. They [21] reported an electron spin resonance spectroscopy study of the affects of different parameters on the rates of formation and decay of free radicals in microcrystalline cellulose and in purified fibrous cotton cellulose. From the results they obtained, they suggested that ceric ions form a chelate with the cellulose molecule, possibly, through the C2 and C3 hydroxyls of the anhy-droglucose unit. Transfer of electrons from the cellulose molecule to Ce(IV) would follow, leading to its reduction... [Pg.503]

Graft copolymerization of acrylonitrile with various vinyl comonomers such as methyl acrylate, ethyl acrylate, vinyl acetate, and styrene onto cellulose derivatives using ceric ion was studied [24]. The results showed that... [Pg.504]

The pyrophosphate complex of Mn(II) ion was found to initiate grafting of acrylonitrile onto cellulose and its derivatives [36,37],... [Pg.505]

The photo-induced process of modification of cellulose and its derivatives was reported by Geacintov and coworkers [67,68]. Thus, acrylonitrile, vinyl acetate, styrene, MMA, and the binary system of styrene and AN were grafted onto cellulose and cellulose derivatives. In... [Pg.506]

Improvement in the solvent and oil resistance of rubbers can be achieved via grafting of acrylonitrile onto rubber [140-142] and rubber blends [143]. The careful control of the degree of grafting allows vulcanized rubber with high-mechanical properties compared with ungrafted vulcanized rubber to be obtained. Also, acid resistance [144] and resistance to microbiological attack [145,146] was improved for cellulose grafted with acrylonitrile, and increases in base resistance were also noted for MMA and a mixture of MMA and ethyl acrylate [13],... [Pg.512]

Partial carboxymethylation of wood pulp significantly increases its susceptibility toward grafting with acrylonitrile using the ceric ion as the initiator 146]. Studies dealing with grafting of various vinyl monomers, such as acrylonitrile, methylmethacrylate, and acrylamide, onto partially carboxymethylated cotton cellulose using tetravalent cerium as the initiator have been reported [47]. [Pg.537]

An effective method of NVF chemical modification is graft copolymerization [34,35]. This reaction is initiated by free radicals of the cellulose molecule. The cellulose is treated with an aqueous solution with selected ions and is exposed to a high-energy radiation. Then, the cellulose molecule cracks and radicals are formed. Afterwards, the radical sites of the cellulose are treated with a suitable solution (compatible with the polymer matrix), for example vinyl monomer [35] acrylonitrile [34], methyl methacrylate [47], polystyrene [41]. The resulting copolymer possesses properties characteristic of both fibrous cellulose and grafted polymer. [Pg.796]

Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads... Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads...
Uses Solvent for cellulose esters and resins in manufacturing of printing inks, nail polishes, polymerization and spinning of acrylonitrile, dyeing wool, polyvinyl chloride adhesives, esters, waxes, vegetable oils brake fluids solvent degreasing antiseptic organic synthesis. [Pg.972]

Cellulose undergoes reaction with activated ethylenic compounds such as acrylonitrile giving cyanoethylcellulose via a Michael addition. [Pg.272]

ABS Acrylonitrile-butadiene-styrene terpolymer CA Cellulose acetate... [Pg.728]

Deters (14) grafted acrylonitrile, methyl methacrylate and vinyl chloride on cellulose and cellulose triacetate. The first two monomers were put in the reactor as liquids, the last as a gas. The results are summarized on Table 1. Vinyl chloride did not graft to cellulose (14). [Pg.9]


See other pages where Acrylonitrile-cellulose is mentioned: [Pg.112]    [Pg.112]    [Pg.37]    [Pg.366]    [Pg.549]    [Pg.441]    [Pg.633]    [Pg.490]    [Pg.69]    [Pg.489]    [Pg.511]    [Pg.341]    [Pg.869]    [Pg.46]    [Pg.141]    [Pg.285]    [Pg.770]    [Pg.9]    [Pg.9]    [Pg.59]    [Pg.64]   
See also in sourсe #XX -- [ Pg.112 ]




SEARCH



Acrylonitrile grafting cellulose

Acrylonitrile, cellulose grafting with

© 2024 chempedia.info