Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile-butadiene-styrene production

BTBPE is used as an additive flame retardant, replacing octaPBDE, for polystyrene and acrylonitrile-butadiene-styrene products. BTBPE was found in the eggs of birds and especially in the dust and air in plants for the liquidation of electronic waste. Animal studies indicate minimum BTBPE absorption in the digestive tract. The major part of BTBPE is probably excreted, partly as metabolites, such as hydroxylated BTBPE and 2,4,6-tribromophenol. [Pg.1005]

DBDPE is an additive flame retardant with similar uses as decaBDE. It is employed in acrylonitrile-butadiene-styrene products, and is added to polystyrene and insulation materials. DBDPE has been detected in air, soil and sludge at concentrations one order of magnitude higher than BTBPE. DBDPE enters the body in small quantities due to its higher molecular weight. [Pg.1005]

Acrylonitrile—Butadiene—Styrene. ABS is an important commercial polymer, with numerous apphcations. In the late 1950s, ABS was produced by emulsion grafting of styrene-acrylonitrile copolymers onto polybutadiene latex particles. This method continues to be the basis for a considerable volume of ABS manufacture. More recently, ABS has also been produced by continuous mass and mass-suspension processes (237). The various products may be mechanically blended for optimizing properties and cost. Brittle SAN, toughened by SAN-grafted ethylene—propylene and acrylate mbbets, is used in outdoor apphcations. Flame retardancy of ABS is improved by chlorinated PE and other flame-retarding additives (237). [Pg.419]

Rubber-Modified Copolymers. Acrylonitrile—butadiene—styrene polymers have become important commercial products since the mid-1950s. The development and properties of ABS polymers have been discussed in detail (76) (see Acrylonitrile polymers). ABS polymers, like HIPS, are two-phase systems in which the elastomer component is dispersed in the rigid SAN copolymer matrix. The electron photomicrographs in Figure 6 show the difference in morphology of mass vs emulsion ABS polymers. The differences in stmcture of the dispersed phases are primarily a result of differences in production processes, types of mbber used, and variation in mbber concentrations. [Pg.508]

ABS (acrylonitrile—butadiene-styrene) resins are two-phase blends. These are prepared by emulsion polymerization or suspension grafting polymerization. Products from the former process contain 20—22% butadiene those from the latter, 12—16%. [Pg.346]

The primary use of acrylonitrile is as the raw material for the manufacture of acrylic and modacrylic fibers. Other Major uses include the production of plastics (acrylonitrile-butadiene- styrene (ABS) and styrene-acrylonitrile (SAN), nitrile rubbers, nitrile barrier resins, adiponitrile and acrylamide (EPA 1984). [Pg.80]

In the cavernous halls of the Shanghai Industrial Exhibition, one can see a cornucopia of consumer goods (clothes of polyester, polyacrylic, and polyvinyl alcohol fiber shoes and sandals of polyvinyl chloride suitcases and television set frames of acrylonitrile-butadiene-styrene plastic toys and containers of polyethylene, and many other plastic products (China produced approximately 800,000 tons of plastics in 1980) of convenience we take for granted in the West) that the Chinese government will try to deliver, in quantity, to its citizens in the years to come. [Pg.333]

Fig. 1. Process flow sheet for the continuous conversion of latex in a counterrotating, tangential twin-screw extruder as it might be arranged for the production of acrylonitrile-butadiene-styrene polymer (Nichols and Kheradi, 1982). Polystyrene (or styrene-acrylonitrile) melt is fed upstream of the reactor zone where the coagulation reaction takes place. Washing (countercurrent liquid-liquid extraction) and solids separation are conducted in zones immediately downstream of the reactor zone. The remainii zones are reserved for devolatilization and pumping. Fig. 1. Process flow sheet for the continuous conversion of latex in a counterrotating, tangential twin-screw extruder as it might be arranged for the production of acrylonitrile-butadiene-styrene polymer (Nichols and Kheradi, 1982). Polystyrene (or styrene-acrylonitrile) melt is fed upstream of the reactor zone where the coagulation reaction takes place. Washing (countercurrent liquid-liquid extraction) and solids separation are conducted in zones immediately downstream of the reactor zone. The remainii zones are reserved for devolatilization and pumping.
Emulsion polymerization is used for 10-15% of global polymer production, including such industrially important polymers as poly(acrylonitrile-butadiene-styrene) (ABS), polystyrene, poly(methyl methacrylate), and poly (vinyl acetate) [196]. These are made from aqueous solutions with high concentrations of suspended solids. The important components have unsaturated carbon-carbon double bonds. Raman spectroscopy is well-suited to address these challenges, though the heterogeneity of the mixture sometimes presents challenges. New sample interfaces, such as WAI and transmission mode, that have shown promise in pharmaceutical suspensions are anticipated to help here also. [Pg.222]

An example of this type of a safer chemical is methacrylonitrile (1) compared with acrylonitrile (2) (Figure 1.1). Both compounds are a, 3-unsaturated aliphatic nitriles, and structurally very similar, but 2 causes cancer whereas 1 does not appear to do so. Among other applications, 2 is used in the production of acrylic and modacrylic fibers, elastomers, acrylonitrile-butadiene-styrene and styrene-acrylonitrile resins, nitrile rubbers, and gas barrier resins. In a study conducted by the US National Toxicology Program (NTP) in which 2 was administered orally to mice for 2 years, there was clear evidence that it caused cancer in the treated mice (in addition to causing other toxic effects), and is classified by the NTP as a probable human carcinogen [26]. [Pg.12]

Worldwide consumption of acrylonitrile increased 52% between 1976 and 1988, from 2500 to 3800 thousand tonnes per year. The trend in consumption over this time period is shown in Table 2 for the principal uses of acrylonitrile acrylic fibre, acrylonitrile-butadiene-styrene (ABS) resins, adiponitrile, nitrile rubbers, elastomers and styrene-acrylonitrile (SAN) resins. Since the 1960s, acrylic fibres have remained the major outlet for acrylonitrile production in the United States and especially in Japan and the Far East. Acrylic fibres always contain a comonomer. Fibres containing 85 wt% or more acrylonitrile are usually referred to as acrylics and fibres containing 35-85 wt% acrylonitrile are called modacrylics . Acrylic fibres are used primarily for the manufacture of apparel, including sweaters, fleece wear and sportswear, and home furnishings, including carpets, upholstery and draperies (Langvardt, 1985 Brazdil, 1991). [Pg.46]

Acrylonitrile is a monomer used in high volume principally in the manufacture of acrylic fibres, resins (acrylonitrile-butadiene-styrene, styrene-acrylonitrile and others) and nitrile rubbers (butadiene-acrylonitrile). Other important uses are as an intermediate in the preparation of adiponitrile (for nylon 6/6) and acrylamide and, in the past, as a fumigant. Occupational exposures to acrylonitrile occur in its production and use in the preparation of fibres, resins and other products. It is present in cigarette smoke and has been detected rarely and at low levels in ambient air and water. [Pg.90]

Butadiene is a monomer used in high volume in the manufacture of a wide range of polymers, including styrene-butadiene rubber, polybutadiene, nitrile rubber, acrylonitrile-butadiene-styrene resins and st rene-butadiene latexes. It is also an intermediate in the production of various other chemicals. [Pg.199]

Copolymers show chemical resistance generally similar to that of polystyrene and terpolvmers similar to that of ABS (acrylonitrile-butadiene-styrene). Neither type is recommended for use in strongly alkaline environments. All impact versions have good natural color and products are available in a wide range of colors. Copolymer crystal grades have good clarity and gloss. [Pg.1557]

The most common advanced composites are made of thermosetting resins, such as epoxy polymers (the most popular singlematrix material), polyesters, vinyl esters, polyurethanes, polyimids, cianamids, bismaleimides, silicones, and melamine. Some of the most widely used thermoplastic polymers are polyvinyl chloride (PVC), PPE (poly[phenylene ether]), polypropylene, PEEK (poly [etheretherketone]), and ABS (acrylonitrile-butadiene-styrene). The precise matrix selected for any given product depends primarily on the physical properties desired for that product. Each type of resin has its own characteristic thermal properties (such as melting point... [Pg.30]

ABS is short for poly(acrylonitrile-butadiene-styrene) and this is a copolymer, so called because it is made from a mixture of basic monomer units, each of which bring some desirable property to the final product. ABS is widely used to make children s toys, car facias, and fingernail extensions. [Pg.205]

During weathering, phenolic antioxidants are photooxidized into hydroperoxycy-clohexadienones, such as 59 (Pospisil, 1993 Pospisil, 1980). The presence of peroxidic moieties in 57 and 59 renders them thermolabile at temperatures exceeding 100 °C and photolysable under solar UV radiation. Both processes account for homolysis of the peroxidic moieties. As a result, the oxidative degradation of the polymeric matrix is accelerated by formed free-radical fragments (tests were performed with atactic polypropylene and acrylonitrile-butadiene-styrene terpolymer (ABS) (PospiSil, 1981 PospiSil, 1980). Low-molecular-weight products of homolysis, such as 60 to 63 are formed in low amounts. [Pg.69]

Zitting A, Savolainen H. 1980. Effects of single and repeated exposures to thermo-oxidative degradation products of poly(acrylonitrile-butadiene-styrene) on rat lung, liver, kidney and brain. Arch Toxicol 46 295-304. [Pg.145]


See other pages where Acrylonitrile-butadiene-styrene production is mentioned: [Pg.186]    [Pg.202]    [Pg.378]    [Pg.327]    [Pg.327]    [Pg.530]    [Pg.475]    [Pg.378]    [Pg.52]    [Pg.327]    [Pg.730]    [Pg.778]    [Pg.21]    [Pg.153]    [Pg.184]    [Pg.7]    [Pg.387]    [Pg.89]    [Pg.92]    [Pg.159]    [Pg.206]    [Pg.207]    [Pg.237]    [Pg.292]    [Pg.312]    [Pg.331]    [Pg.332]    [Pg.347]    [Pg.351]    [Pg.362]   
See also in sourсe #XX -- [ Pg.343 , Pg.344 , Pg.345 , Pg.346 ]




SEARCH



1,3-Butadiene production

Acrylonitril-butadiene-styrene

Acrylonitrile-butadiene-styrene

Butadiene-acrylonitrile

STYRENE-ACRYLONITRILE

Styrene Production

Styrene-butadiene

© 2024 chempedia.info