Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylics thermal

The analysis of the gaseous products thermal transformation and the solid product composition (decarboxylated polymer, including metal or its oxide) allows us to determine a general scheme of the metal acrylate thermal transformations ... [Pg.91]

Since butyl acrylate is higher in molecular weight than vinyl acetate, higher weight fractions are needed to achieve the same final level of crystallinity in the ethylene copolymer. Topically packaging grades contain 33% butyl acrylate. Thermal stability is far better than EVA, with butene rather than acetic acid produced upon decomposition. Acetic acid can catalyze further polymer decomposition and corrosion of the application equipment. Low temperature properties are also... [Pg.717]

The performance of different kinds of solder masks (UV-cured acrylated, thermally cured epoxies and alkyd/amine systems and dry film solder masks) under humid conditions at elevated temperatures is described by Fox All systems suffer from serious reduction of insulation resistance. The soldering process partially restores the insulation resistance. [Pg.35]

Other Syntheses. Acryhc acid and other unsaturated compounds can also be made by a number of classical elimination reactions. Acrylates have been obtained from the thermal dehydration of hydracryhc acid (3-hydroxypropanoic acid [503-66-2]) (84), from the dehydrohalogenation of 3-halopropionic acid derivatives (85), and from the reduction of dihalopropionates (2). These studies, together with the related characterization and chemical investigations, contributed significantly to the development of commercial organic chemistry. [Pg.155]

During the reaction, the palladium catalyst is reduced. It is reoxidized by a co-catalyst system such as cupric chloride and oxygen. The products are acryhc acid in a carboxyUc acid-anhydride mixture or acryUc esters in an alcohoHc solvent. Reaction products also include significant amounts of 3-acryloxypropionic acid [24615-84-7] and alkyl 3-alkoxypropionates, which can be converted thermally to the corresponding acrylates (23,98). The overall reaction may be represented by ... [Pg.156]

Mechanical and Thermal Properties. The first member of the acrylate series, poly(methyl acrylate), has fltde or no tack at room temperature it is a tough, mbbery, and moderately hard polymer. Poly(ethyl acrylate) is more mbberflke, considerably softer, and more extensible. Poly(butyl acrylate) is softer stiU, and much tackier. This information is quantitatively summarized in Table 2 (41). In the alkyl acrylate series, the softness increases through n-octy acrylate. As the chain length is increased beyond n-octy side-chain crystallization occurs and the materials become brittle (42) poly( -hexadecyl acrylate) is hard and waxlike at room temperature but is soft and tacky above its softening point. [Pg.163]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

Acryhc elastomers are normally stable and not reactive with water. The material must be preheated before ignition can occur, and fire conditions offer no hazard beyond that of ordinary combustible material (56). Above 300°C these elastomers may pyrolize to release ethyl acrylate and other alkyl acrylates. Otherwise, thermal decomposition or combustion may produce carbon monoxide, carbon dioxide, and hydrogen chloride, and/or other chloiinated compounds if chlorine containing monomers are present ia the polymer. [Pg.478]

Mihtary interest in the development of fuel and thermal resistant elastomers for low temperature service created a need for fluorinated elastomers. In the early 1950s, the M. W. Kellogg Co. in a joint project with the U.S. Army Quartermaster Corps, and 3M in a joint project with the U.S. Air Force, developed two commercial fluorocarbon elastomers. The copolymers of vinyUdene fluoride, CF2=CH2, and chlorotrifluoroethylene, CF2=CFC1, became available from Kellogg in 1955 under the trademark of Kel-F (1-3) (see Fluorine compounds, ORGANic-POLYcm.OROTRiFLUOROETHYLENE Poly(vinylidene) fluoride). In 1956, 3M introduced a polymer based on poly(l,l-dihydroperfluorobutyl acrylate) trademarked 3M Brand Fluorombber 1F4 (4). The poor balance of acid, steam, and heat resistance of the latter elastomer limited its commercial use. [Pg.508]

Bead Polymerization Bulk reaction proceeds in independent droplets of 10 to 1,000 [Lm diameter suspended in water or other medium and insulated from each other by some colloid. A typical suspending agent is polyvinyl alcohol dissolved in water. The polymerization can be done to high conversion. Temperature control is easy because of the moderating thermal effect of the water and its low viscosity. The suspensions sometimes are unstable and agitation may be critical. Only batch reaciors appear to be in industrial use polyvinyl acetate in methanol, copolymers of acrylates and methacrylates, polyacrylonitrile in aqueous ZnCh solution, and others. Bead polymerization of styrene takes 8 to 12 h. [Pg.2102]

The as-spun acrylic fibers must be thermally stabilized in order to preserve the molecular structure generated as the fibers are drawn. This is typically performed in air at temperatures between 200 and 400°C [8]. Control of the heating rate is essential, since the stabilization reactions are highly exothermic. Therefore, the time required to adequately stabilize PAN fibers can be several hours, but will depend on the size of the fibers, as well as on the composition of the oxidizing atmosphere. Their are numerous reactions that occur during this stabilization process, including oxidation, nitrile cyclization, and saturated carbon bond dehydration [7]. A summary of several fimctional groups which appear in stabilized PAN fiber can be seen in Fig. 3. [Pg.122]

Instead of using thermal energy to trigger the hydrogen abstraction mechanism, photo-induced reactions can be also be used to successfully crosslink acrylic PSAs [74-76], In this case, photoactive compounds, such as for example those containing benzophenone, anthraquinone or triazine nuclei are compounded with the polymer or copolymerized as one of the monomers. After drying, the adhesive... [Pg.495]

Advantages are similar to the epoxy system, in that these can be solventless and do not require thermal energy. Disadvantages unique to this system, however, include the need to inert the cure chamber to avoid air-inhibition of cure as well as some release instability with acrylate adhesives [72]. [Pg.546]

An example of this improvement in toughness can be demonstrated by the addition of Vamac B-124, an ethylene/methyl acrylate copolymer from DuPont, to ethyl cyanoacrylate [24-26]. Three model instant adhesive formulations, a control without any polymeric additive (A), a formulation with poly(methyl methacrylate) (PMMA) (B), and a formulation with Vamac B-124 (C), are shown in Table 4. The formulation with PMMA, a thermoplastic which is added to modify viscosity, was included to determine if the addition of any polymer, not only rubbers, could improve the toughness properties of an alkyl cyanoacrylate instant adhesive. To demonstrate an improvement in toughness, the three formulations were tested for impact strength, 180° peel strength, and lapshear adhesive strength on steel specimens, before and after thermal exposure at 121°C. [Pg.857]

Operating conditions are important determinants of the choice of fabric. Some fabrics (e.g., polyolefins, nylons, acrylics, polyesters) are useful only at relatively low temperatures of 95 to 150°C (200 to 300°F). For high-temperature flue gas streams, more thermally stable fabrics such as fiberglass. Teflon, or Nomex must be used. [Pg.408]

An important subdivision within the thermoplastic group of materials is related to whether they have a crystalline (ordered) or an amorphous (random) structure. In practice, of course, it is not possible for a moulded plastic to have a completely crystalline structure due to the complex physical nature of the molecular chains (see Appendix A). Some plastics, such as polyethylene and nylon, can achieve a high degree of crystallinity but they are probably more accurately described as partially crystalline or semi-crystalline. Other plastics such as acrylic and polystyrene are always amorphous. The presence of crystallinity in those plastics capable of crystallising is very dependent on their thermal history and hence on the processing conditions used to produce the moulded article. In turn, the mechanical properties of the moulding are very sensitive to whether or not the plastic possesses crystallinity. [Pg.4]


See other pages where Acrylics thermal is mentioned: [Pg.420]    [Pg.165]    [Pg.135]    [Pg.156]    [Pg.196]    [Pg.257]    [Pg.283]    [Pg.284]    [Pg.285]    [Pg.10]    [Pg.428]    [Pg.57]    [Pg.58]    [Pg.437]    [Pg.438]    [Pg.3]    [Pg.338]    [Pg.355]    [Pg.489]    [Pg.474]    [Pg.123]    [Pg.728]    [Pg.136]    [Pg.486]    [Pg.505]    [Pg.552]    [Pg.553]    [Pg.847]    [Pg.222]   


SEARCH



Thermal degradation of methacrylic and acrylic polymers

© 2024 chempedia.info