Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic solids

Polymer type styrene-acrylic Solids (%) 45 Viscosity (cps) <300 Grit (ppm) <50 Specific gravity 1.040... [Pg.525]

NMR has been used to monitor polymerization reactions in real time. During the emulsion formation of poly(butyl acrylate), solid-state spectra were recorded every minute, and spectra, every 8.5 min [91]. Not... [Pg.464]

CgH,oN20. Colourless crystalline solid, m.p. 121 °C. Made by reacting phenylhydrazine with ethyl acrylate to obtain the hydrazide which cyclizes to the product. Its major commercial importance is as a photographic developing agent, being used particularly in conjunction with hydroquinone. [Pg.306]

The cure reaction of structural acrylic adhesives can be started by any of a great number of redox reactions. One commonly used redox couple is the reaction of benzoyl peroxide (BPO) with tertiary aromatic amines. Pure BPO is hazardous when dry [39]. It is susceptible to explosion from shock, friction or heat, and has an autoignition temperature of 79°C. Water is a very effective stabilizer for BPO, and so the initiator is often available as a paste or a moist solid [40], The... [Pg.832]

With plastics there is a certain temperature, called the glass transition temperature, Tg, below which the material behaves like glass i.e. it is hard and rigid. As can be seen from Table 1.8 the value for Tg for a particular plastic is not necessarily a low temperature. This immediately helps to explain some of the differences which we observe in plastics. For example, at room temperature polystyrene and acrylic are below their respective Tg values and hence we observe these materials in their glassy state. Note, however, that in contrast, at room temperature, polyethylene is above its glass transition temperature and so we observe a very flexible matoial. When cooled below its Tg it then becomes a hard, brittle solid. Plastics can have several transitions. [Pg.30]

Heating the crystalline salt 2-aminopyridinium propiolate (346) at 100 °C in the solid state led to a 10 9 mixture of 2/f-pyrido[l,2-n]pyrimidin-2-one and ( )-3-(2-imino-l,2-dihydro-l-pyridyl)acrylic acid (347). Analysis of differental scanning calorimetry data shows unambiguously that the reaction takes place in the solid state. An endothermic peak at 81.1 °C corresponds to a solid state reaction, and a peak at 122-123 °C is attributed to melting. The product ratio of 2//-pyrido[l, 2-n]pyrimidin-2-one and 347 is 1 2.5 at 60°C, and 1 1.4 at 80°C (94MI12). [Pg.242]

Acrylamide is the most important and the simplest of the acrylic and methacrylic amides. Acrylamide is a colorless crystalline solid. The basic physical properties and solubilities of acrylamide are given in Table I. Acrylamide is a severe neurotoxin and is a cumulative toxicological hazard. [Pg.61]

When the polymer was prepared by the suspension polymerization technique, the product was crosslinked beads of unusually uniform size (see Fig. 16 for SEM picture of the beads) with hydrophobic surface characteristics. This shows that cardanyl acrylate/methacry-late can be used as comonomers-cum-cross-linking agents in vinyl polymerizations. This further gives rise to more opportunities to prepare polymer supports for synthesis particularly for experiments in solid-state peptide synthesis. Polymer supports based on activated acrylates have recently been reported to be useful in supported organic reactions, metal ion separation, etc. [198,199]. Copolymers are expected to give better performance and, hence, coplymers of CA and CM A with methyl methacrylate (MMA), styrene (St), and acrylonitrile (AN) were prepared and characterized [196,197]. [Pg.431]

Porous glass (PG) modified with covalently adsorbed poly(p-nitrophenyl acrylate), as described in Sect. 4.1, turned out to be a highly suitable carrier for immobilization of various biospecific ligands and enzymes. When the residual active ester groups of the carrier were blocked by ethanolamine, the immobilized ligands when bound to the solid support via hydrophilic and flexible poly(2-hydroxyethyl acrylamide). The effective biospecific binding provided by the ligands... [Pg.170]

Radical induced grafting may be carried out in solution, in the melt phase,292 29 or as a solid state process.296 This section will focus on melt phase grafting to polyolefin substrates but many of the considerations are generic. The direct grafting of monomers onto polymers, in particular polyolefins, in the melt phase by reactive extrusion has been widely studied. Most recently, the subject has been reviewed by Moad1 9 and by Russell.292 More details on reactive extrusion as a technique can be found in volumes edited by Xanthos," A1 Malaika and Baker et a 21 7 The process most often involves combining a frcc-radical initiator (most commonly a peroxide) and a monomer or macromonomer with the polyolefin as they are conveyed through the extruder. Monomers commonly used in this context include MAII (Section 7.6.4.1), maleimidc derivatives and malcate esters (Section 7.6.4.2), (meth)acrylic acid and (meth)acrylate esters (Section 7.6.43), S, AMS and derivatives (Section 7.6.4.4), vinylsilancs (Section 7.6.4.5) and vinyl oxazolines (Section 7.6.4.6). [Pg.390]

Analytical A proc is described for the quant titrimetric analysis of TeNMe in nitric acid (Ref 35)s and a spectrophotometric method is described in Ref 41 for the detn of small amts of TeNMe in air and w Critical Diameter. The crit diam for deton propagation of TeNMe thickened with poly-(methyl acrylate) and loaded with up to 75% inert solids was detd and found to decrease with increasing solids loading. It was postulated that the solids acted as reaction foci ahead of the deton front (Ref 45)... [Pg.101]

Composite proplnts, which are used almost entirely in rocket propulsion, normally contain a solid phase oxidizer combined with a polymeric fuel binder with a -CH2—CH2— structure. Practically speaking AP is the only oxidizer which has achieved high volume production, although ammonium nitrate (AN) has limited special uses such as in gas generators. Other oxidizers which have been studied more or less as curiosities include hydrazinium nitrate, nitronium perchlorate, lithium perchlorate, lithium nitrate, potassium perchlorate and others. Among binders, the most used are polyurethanes, polybutadiene/acrylonitrile/acrylic acid terpolymers and hydroxy-terminated polybutadienes... [Pg.886]

A lower max response at resonance was noted for poly butadiene-acrylic acid-containing pro-pints compared with polyurethane-containing opaque proplnts. Comparison of the measured response functions with predictions of theoretical models, which were modified to consider radiant-heat flux effects for translucent proplnts rather than pressure perturbations, suggest general agreement between theory and expt. The technique is suggested for study of the effects of proplnt-formulation variations on solid-proplnt combustion dynamics... [Pg.940]

PCA 16 is available as Beldene 161/164 (50/35% w/w solids), Acumer 4161 (50%), and Polysperse (50%). These are low-phosphorus content materials that have found application in boiler FW formulations because of excellent sludge conditioning and particulate dispersion properties. The number 16 represents a 16 1 w/w ratio of acrylic acid and sodium hypophosphite, giving PCA 16 a MW range of 3,300 to 3,900. PCA 16 is particularly effective for the control of calcium carbonate and sulfate deposition. It is usually incorporated with other polymers in formulations and is approved for use under U.S. CFR 21, 173.310. [Pg.452]

A modified latex composition contains a phosphorus surface group. Such a latex is formed by emulsion polymerization of unsaturated synthetic monomers in the presence of a phosponate or a phosphate which is intimately bound to the surface of the latex. Thus, a modified latex containing 46% solids was prepared by emulsion polymerization of butadiene, styrene, acrylic acid-styrene seed latex, and a phosphonate comonomer in H20 in the presence of phosphated alkylphenol ethoxylate at 90°C. The modified latex is useful as a coating for substrates and as a binder in aqueous systems containing inorganic fillers employed in paper coatings, carpet backings, and wallboards [119]. [Pg.602]

FIGURE 26.56 Log Abrasion loss by a blade (solid lines) and log cut growth rate (dashed hnes) of noncrystallizing rubber compounds as function of log frictional and log tearing energy, respectively isomerized natural rubber (NR), 2 styrene-butadiene rubber (SBR), and 3 acrylate-butadiene rubber (ABR). (From Champ, D.H., Southern, E., and Thomas, A.G., Advances in Polymer Friction and Wear, Lieng Huang Lee (ed.), Plenum, New York/London, 1974, p. 134.)... [Pg.731]

A different approach, although stdl working with essentially non-fiinctional polymers has been exemplified [114,115], in which, a 100% solid (solvent free) hot melt has been irradiated to produce pressure-sensitive adhesives with substantially improved adhesive properties. Acrylic polymers, vinyl acetate copolymers with small amounts of A,A -dimethylaminoethyl methacrylate, diacetone acrylamide, A-vinyl pyrrohdone (NVP) or A A have been used in this study. Polyfunctional acrylates, such as trimethylolpropane trimethacrylate (TMPTMA) and thermal stabilizers can also be used. [Pg.866]


See other pages where Acrylic solids is mentioned: [Pg.525]    [Pg.525]    [Pg.525]    [Pg.1435]    [Pg.525]    [Pg.525]    [Pg.525]    [Pg.1435]    [Pg.13]    [Pg.171]    [Pg.533]    [Pg.334]    [Pg.411]    [Pg.39]    [Pg.488]    [Pg.492]    [Pg.517]    [Pg.824]    [Pg.833]    [Pg.14]    [Pg.882]    [Pg.55]    [Pg.605]    [Pg.28]    [Pg.16]    [Pg.697]    [Pg.832]    [Pg.937]    [Pg.946]    [Pg.947]    [Pg.40]    [Pg.866]    [Pg.199]    [Pg.7]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Cement modifiers solid acrylics

© 2024 chempedia.info