Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic acid hydrogen bonding

Atrazine (the template) has a triazine ring and two amino groups, all of which form hydrogen bonds with appropriate residues in aprotic solvents (Fig. 6.2). Accordingly, methacrylic acid, having a carboxylic acid (hydrogen-bonding site), is chosen as the functional monomer. Acrylic acid is also useful. The two types of interactions at the two amino... [Pg.65]

A significant step towards commercial success came with a discovery in the late 1950s by E. Ulrich at 3M when he found that copolymerization of hydrogen bonding monomers, like acrylic acid with alkyl acrylates resulted in cohesively strong, yet tacky materials [63]. Since then, newer developments in such areas as polymer crosslinking, and the synthesis and copolymerization of new monomers, have led to a rapid penetration of acrylics throughout the PSA industry. [Pg.485]

As the amount of acrylic acid in the polymer increases, the degree of hydrogen bonding between polymer chains also increases causing the cohesive strength to improve without the need for crosslinking. Very similar observations can be made for other polar monomers, such as acrylamide. [Pg.490]

The amount of polar monomer one would copolymerize with the alkyl acrylate monomer(s) very much depends on the type of polar monomer and the desired change in rheological properties one would like to achieve. Strong hydrogen bonding monomers, such as acrylic acid, methacrylic acid, acrylamide, or methacrylamide are typically used at levels of 12% or less of the total monomers. [Pg.490]

The Diels-Alder reaction of a diene with a substituted olefinic dienophile, e.g. 2, 4, 8, or 12, can go through two geometrically different transition states. With a diene that bears a substituent as a stereochemical marker (any substituent other than hydrogen deuterium will suffice ) at C-1 (e.g. 11a) or substituents at C-1 and C-4 (e.g. 5, 6, 7), the two different transition states lead to diastereomeric products, which differ in the relative configuration at the stereogenic centers connected by the newly formed cr-bonds. The respective transition state as well as the resulting product is termed with the prefix endo or exo. For example, when cyclopentadiene 5 is treated with acrylic acid 15, the cw fo-product 16 and the exo-product 17 can be formed. Formation of the cw fo-product 16 is kinetically favored by secondary orbital interactions (endo rule or Alder rule) Under kinetically controlled conditions it is the major product, and the thermodynamically more stable cxo-product 17 is formed in minor amounts only. [Pg.91]

A similar study performed by Welton and co-workers studied the rate and selec-tivities of the Diels-Alder reaction between cyclopentadiene and methyl acrylate in a number of neutral ionic liquids [44]. It was found that endo. exo ratios decreased slightly as the reaction proceeded, and were dependent on reagent concentration and ionic liquid type. Subsequently, they went on to demonstrate that the ionic liquids controlled the endo. exo ratios through a hydrogen bond (Lewis acid) interaction with the electron-withdrawing group of the dienophile. [Pg.183]

The nature of the interaction between the monomer and the template is more obvious in cases where specific ionic or hydrogen bonding is possible. For example, /f-vinyl imidazole has been polymerized along a PM A A template301 202 and acrylic acid has been polymerized on a Af-vinylpyrrolidone template.3 The daughter PAA had a similar degree of polymerization to the template and had a greater fraction of isotaclic triads than PAA formed in the absence of the template. [Pg.438]

Hydrophobic interactions of this kind have been assumed to originate because the attempt to dissolve the hydrocarbon component causes the development of cage structures of hydrogen-bonded water molecules around the non-polar solute. This increase in the regularity of the solvent would result in an overall reduction in entropy of the system, and therefore is not favoured. Hydrophobic effects of this kind are significant in solutions of all water-soluble polymers except poly(acrylic acid) and poly(acrylamide), where large heats of solution of the polar groups swamp the effect. [Pg.76]

Poly(acrylic acid) is very soluble in water as are its copolymers with maleic and itaconic acids. Solutions of 50 % by mass are easily obtained. The isomer of PAA, poly(ethylene maleic acid), is not so soluble. However, solutions of PAA tend over a period of time to gel when their concentration in water approaches 50 % by mass (Crisp, Lewis Wilson, 1975) this is attributed to a slow increase in the number of intermolecular hydrogen bonds. Copolymers of acrylic acid and itaconic acid are more stable in solution and their use has been advocated by Crisp et al. (1975, 1980). [Pg.98]

A related study with a similar ruthenium catalyst led to the structural and NMR characterization of an intermediate that has the crucial Ru—C bond in place and also shares other features with the BEMAP-ruthenium diacetate mechanism.33 This mechanism, as summarized in Figure 5.4, shows the formation of a metal hydride prior to the complexation of the reactant. In contrast to the mechanism for acrylic acids shown on p. 378, the creation of the new stereocenter occurs at the stage of the addition of the second hydrogen. [Pg.381]

Many synthetic water-soluble polymers are easily analyzed by GPC. These include polyacrylamide,130 sodium poly(styrenesulfonate),131 and poly (2-vinyl pyridine).132 An important issue in aqueous GPC of synthetic polymers is the effect of solvent conditions on hydrodynamic volume and therefore retention. Ion inclusion and ion exclusion effects may also be important. In one interesting case, samples of polyacrylamide in which the amide side chain was partially hydrolyzed to generate a random copolymer of acrylic acid and acrylamide exhibited pH-dependent GPC fractionation.130 At a pH so low that the side chain would be expected to be protonated, hydrolyzed samples eluted later than untreated samples, perhaps suggesting intramolecular hydrogen bonding. At neutral pH, the hydrolyzed samples eluted earlier than untreated samples, an effect that was ascribed to enlargement... [Pg.334]

Acid-containing polymers, hydrogen bonding, 260 Acrylic monomers photografting, 172,173/,174 UV curing, 212-213 Acrylic-acrylic block copolymers, synthesis, 259... [Pg.472]

Bajoras and Makuska investigated the effect of hydrogen bonding complexes on the reactivities of (meth)acrylic and isotonic acids in a binary mixture of dimethyl sulfoxide and water using IR spectroscopy (Bajoras and Makuska, 1986). They demonstrated that by altering the solvent composition it was possible to carry out copolymerization in the azeotropic which resulted in the production of homogeneous copolymers of definite compositions at high conversions. Furthermore, it was shown that water solvent fraction determines the rate of copolymerization and the reactivity ratios of the comonomers. This in turn determines the copolymer composition. [Pg.95]

Much emphasis has been placed in recent times on easily recoverable liquid bi-phasic catalysts, including metal clusters in nonconventional solvents. For instance, aqueous solutions of the complexes [Ru3(CO)12.x(TPPTS)x] (x=l, 2, 3 TPPTS = triphenylphosphine-trisulfonate, P(m-C6H4S03Na)3) catalyze the hydrogenation of simple alkenes (1-octene, cyclohexene, styrene) at 60°C and 60 bar H2 at TOF up to 500 h 1 [24], while [Ru i(CO)C (TPPMS) >,] (TPPMS = triphenylphos-phine-monosulfonate, PPh2(m-C6H4S03Na) is an efficient catalyst precursor for the aqueous hydrogenation of the C=C bond of acrylic acid (TOF 780 h 1 at 40 °C and 3 bar H2) and other activated alkenes [25]. The same catalysts proved to be poorly active in room temperature ionic liquids such as [bmim][BF4] (bmim= Tbutyl-3-methylimidazolium). No details about the active species involved are known at this point. [Pg.205]

On the other hand, a good correlation was established between auto-acceleration and the type of molecular association involving the monomer in the system. Pure acrylic acid associates by hydrogen bonds to form "cyclic dimers" and "linear oligomers". The two species are in equilibrium. [Pg.237]

The interaction of the polymer with the filler is promoted by the presence of reactive functionality in the polymer, capable of chemical reaction or hydrogen bonding with the functionality, generally hydroxyl, on the surface of the filler. Thus, carboxyl-containing polymers, e.g. ethylene-acrylic acid copolymers and maleic anhydride- and acrylic acid-grafted polyethylene and polypropylene interact readily with fillers. [Pg.469]

The reaction of acceptor-substituted carbene complexes with alcohols to yield ethers is a valuable alternative to other etherification reactions [1152,1209-1211], This reaction generally proceeds faster than cyclopropanation [1176], As in other transformations with electrophilic carbene complexes, the reaction conditions are mild and well-suited to base- or acid-sensitive substrates [1212], As an illustrative example, Experimental Procedure 4.2.4 describes the carbene-mediated etherification of a serine derivative. This type of substrate is very difficult to etherify under basic conditions (e.g. NaH, alkyl halide [1213]), because of an intramolecular hydrogen-bond between the nitrogen-bound hydrogen and the hydroxy group. Further, upon treatment with bases serine ethers readily eliminate alkoxide to give acrylates. With the aid of electrophilic carbene complexes, however, acceptable yields of 0-alkylated serine derivatives can be obtained. [Pg.196]

Scheme 5 Polyvalent hydrogen bonding of a a soluble poly(N-isopropylacrylamide) to a 3-PAA/PE hyperbranched graft or b a soluble poly(acrylic acid) to a hyperbranched poly(Ar-isopropylacrylamide) graft on PE... Scheme 5 Polyvalent hydrogen bonding of a a soluble poly(N-isopropylacrylamide) to a 3-PAA/PE hyperbranched graft or b a soluble poly(acrylic acid) to a hyperbranched poly(Ar-isopropylacrylamide) graft on PE...

See other pages where Acrylic acid hydrogen bonding is mentioned: [Pg.157]    [Pg.437]    [Pg.277]    [Pg.133]    [Pg.489]    [Pg.547]    [Pg.195]    [Pg.153]    [Pg.671]    [Pg.13]    [Pg.348]    [Pg.157]    [Pg.46]    [Pg.102]    [Pg.247]    [Pg.332]    [Pg.165]    [Pg.59]    [Pg.18]    [Pg.94]    [Pg.2]    [Pg.853]    [Pg.501]    [Pg.107]    [Pg.96]    [Pg.397]    [Pg.1052]    [Pg.59]    [Pg.9]    [Pg.23]    [Pg.72]   
See also in sourсe #XX -- [ Pg.594 ]




SEARCH



Acrylic acid hydrogenation

Hydrogen bond acidic

Hydrogen bond acidity

Hydrogen-bonded acids

© 2024 chempedia.info