Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity actinides

Plaschke, M., Rothe, J., Altmaier, M., Denecke, M. A., and Fanghanel, T. (2005). Near edge X-ray absorption fine structure (NEXAFS) of model compounds for the humic acid/ actinide ion interaction. J. Electron Spectrosc. Relat. Phenom. 148,151-157. [Pg.777]

Fig. 11) form very strong and selective complexes with Fe or actinide and lanthanide ions (63,64) while a similar receptor with hard endocarboxyhc acid groups is efficient for hard and ions showing again responsibility of a charge density effect in the receptor—substrate recognition (65). Thus,... [Pg.180]

The actinide elements exhibit uniformity in ionic types. In acidic aqueous solution, there are four types of cations, and these and their colors are hsted in Table 5 (12—14,17). The open spaces indicate that the corresponding oxidation states do not exist in aqueous solution. The wide variety of colors exhibited by actinide ions is characteristic of transition series of elements. In general, protactinium(V) polymerizes and precipitates readily in aqueous solution and it seems unlikely that ionic forms ate present in such solutions. [Pg.218]

The reduction potentials for the actinide elements ate shown in Figure 5 (12—14,17,20). These ate formal potentials, defined as the measured potentials corrected to unit concentration of the substances entering into the reactions they ate based on the hydrogen-ion-hydrogen couple taken as zero volts no corrections ate made for activity coefficients. The measured potentials were estabhshed by cell, equihbrium, and heat of reaction determinations. The potentials for acid solution were generally measured in 1 Af perchloric acid and for alkaline solution in 1 Af sodium hydroxide. Estimated values ate given in parentheses. [Pg.218]

Fig. 5a. Standard (or formal) reduction potentials of actinium and the actinide ions in acidic (pH 0) and basic (pH 14) aqueous solutions (values are in volts... Fig. 5a. Standard (or formal) reduction potentials of actinium and the actinide ions in acidic (pH 0) and basic (pH 14) aqueous solutions (values are in volts...
Solid Compounds. The tripositive actinide ions resemble tripositive lanthanide ions in their precipitation reactions (13,14,17,20,22). Tetrapositive actinide ions are similar in this respect to Ce . Thus the duorides and oxalates are insoluble in acid solution, and the nitrates, sulfates, perchlorates, and sulfides are all soluble. The tetrapositive actinide ions form insoluble iodates and various substituted arsenates even in rather strongly acid solution. The MO2 actinide ions can be precipitated as the potassium salt from strong carbonate solutions. In solutions containing a high concentration of sodium and acetate ions, the actinide ions form the insoluble crystalline salt NaM02(02CCH2)3. The hydroxides of all four ionic types are insoluble ... [Pg.221]

Actinide Peroxides. Many peroxo compounds of thorium, protactinium, uranium, neptunium, plutonium, and americium are known (82,89). The crystal stmctures of a number of these have been deterrnined. Perhaps the best known are uranium peroxide dihydrate [1344-60-1/, UO 2H20, and, the uranium peroxide tetrahydrate [15737-4-5] UO 4H2O, which are formed when hydrogen peroxide is added to an acid solution of a uranyl salt. [Pg.96]

Nuclear Waste Reprocessing. Liquid waste remaining from processing of spent reactor fuel for military plutonium production is typically acidic and contains substantial transuranic residues. The cleanup of such waste in 1996 is a higher priority than military plutonium processing. Cleanup requires removal of long-Hved actinides from nitric or hydrochloric acid solutions. The transuranium extraction (Tmex) process has been developed for... [Pg.201]

A full discussion of thorium electrochemistry is available (3). Thorium is generally more acidic than the lanthanides but less acidic than other light actinides, such as U, Np, and Pu, as expected from the larger Th" " ionic radius (108 pm). [Pg.35]

Uranium tetrachloride [10026-10-5], UCl, has been prepared by several methods. The first method, which is probably the best, involves the reduction/chlorination of UO [1344-58-7] with boiling hexachloropropene. The second consists of heating UO2 [1344-57-6] under flowing CCl or SOCI2. The stmcture of the dark green tetrachloride is identical to that of Th, Pa, and Np, which all show a dodecahedral geometry of the chlorine atoms about a central actinide metal atom. The tetrachloride is soluble in H2O, alcohol, and acetic acid, but insoluble in ether, and chloroform. Industrially the tetrachloride has been used as a charge for calutrons. [Pg.332]

Both arsonic and arsinic acids give precipitates with many metal ions, a property which has found considerable use in analytical chemistry. Of particular importance are certain a2o dyes (qv) containing both arsonic and sulfonic acid groups which give specific color reactions with a wide variety of transition, lanthanide, and actinide metal ions. One of the best known of these dyes is... [Pg.338]

Brdnsted-Lowry theory, 194 contrast definitions, 194 indicators, 190 reactions, 188 titrations, 188 Acids, 183 aqueous, 179 carboxylic, 334 derivatives of organic, 337 equilibrium calculations, 192 experimental introduction, 183 names of common, 183 naming of organic, 339 properties of, 183 relative strengths, 192, 451 strength of, 190 summary, 185 weak, 190, 193 Actinides, 414 Actinium... [Pg.455]

Thenoyltrifluoroacetone(TTA), C4H3S,CO,CH2,COCF3. This is a crystalline solid, m.p. 43 °C it is, of course, a /1-diketone, and the trifluoromethyl group increases the acidity of the enol form so that extractions at low pH values are feasible. The reactivity of TTA is similar to that of acetylacetone it is generally used as a 0.1-0.5 M solution in benzene or toluene. The difference in extraction behaviour of hafnium and zirconium, and also among lanthanides and actinides, is especially noteworthy. [Pg.170]

Actinide complexes with carboxylic acids. U. Casellato, P. A. Vigato and M. Vidali, Coord. Chem. Rev., 1978, 26, 85-159 (276). [Pg.48]

The Table shows a great spread in Kd-values even at the same location. This is due to the fact that the environmental conditions influence the partition of plutonium species between different valency states and complexes. For the different actinides, it is found that the Kd-values under otherwise identical conditions (e.g. for the uptake of plutonium on geologic materials or in organisms) decrease in the order Pu>Am>U>Np (15). Because neptunium is usually pentavalent, uranium hexavalent and americium trivalent, while plutonium in natural systems is mainly tetravalent, it is clear from the actinide homologue properties that the oxidation state of plutonium will affect the observed Kd-value. The oxidation state of plutonium depends on the redox potential (Eh-value) of the ground water and its content of oxidants or reductants. It is also found that natural ligands like C032- and fulvic acids, which complex plutonium (see next section), also influence the Kd-value. [Pg.278]

Little is known about actinide complexation by humic or fulvic acids although logg -values for Ara3+, Thlt+ and U022+ with humic acid at pH 4.0-4.5 as 6.8, 11.0 and 5.8, respectively, are reported (43). [Pg.284]

Waste Handling for Unirradiated Plutonium Processing. Higher capacity, better-performing, and more radiation-resistant separation materials such as new ion exchange resins(21) and solvent extractants, similar to dihexyl-N,N-di ethyl carbamoyl methylphosphonate,(22) are needed to selectively recover actinides from acidic wastes. The application of membranes and other new techniques should be explored. [Pg.357]

Molten salt extraction residues are processed to recover plutonium by an aqueous precipitation process. The residues are dissolved in dilute HC1, the actinides are precipitated with potassium carbonate, and the precipitate redissolved in nitric acid (7M) to convert from a chloride to a nitrate system. The plutonium is then recovered from the 7M HNO3 by anion exchange and the effluent sent to waste or americium recovery. We are studying actinide (III) carbonate chemistry and looking at new... [Pg.372]

Waste Treatment. Figure 2 outlines the current waste recovery and treatment processes, and proposed changes. Acid waste streams are sent through nitric acid and secondary plutonium recovery processes before being neutralized with potassium hydroxide and filtered. This stream and basic and laundry waste streams are sent to waste treatment. During waste treatment, the actinides in the aqueous waste are removed by three stages of hydroxide-iron carrier-flocculant precipitation. The filtrate solution is then evaporated to a solid with a spray dryer and the solids are cemented and sent to retrievable storage. [Pg.374]

Three classes of carbamoylmethylphosphoryl extractants were studied for their ability to extract selected tri-, tetra-, and hexavalent actinides from nitric acid. The three extractants are dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP), hexyl hexyl-N,N-diethylcarbamoylmethylphosphinate (HHDECMP), and octyl(phenyl)-N,N-diisobutylcarbamoylmethylphos-phine oxide 0< >D[IB]CMP0. The above three extrac-trants were compared on the basis of nitric acid and extractant dependencies for Am(III), solubility of complexes on loading with Nd(III) and U(VI), and selectivity of actinide(III) over fission products. [Pg.428]

We have studied the extractant behavior of a series of compounds containing the carbamoylmethylphosphoryl (CMP) moiety in which the basicity of the phosphoryl group and the steric bulk of the substituent group are varied (10,LL). These studies have led to the development of extractants which have combinations of substituent groups that impart to the resultant molecule improved ability to extract Am(III) from nitric acid and to withstand hydrolytic degradation. At the same time good selectivity of actinides over most fission products and favorable solubility properties on actinide loading are maintained (11). [Pg.429]

Although the D s for U(VI) and tetravalent actinides are very high, the data in Table VII show that formic acid (HC00H) will readily back-extract these elements as well as Am(III) from all the extractants except in the case of U(VI) with 0 D[IB]CMP0. [Pg.438]

This latter situation affords a good method for separating uranium from plutonium. Hydroxylammonium formate (HAF) and hydrazium formate (NHF) were added to the formic acid to reduce Pu(IV) to Pu(III) to aid in plutonium recovery, although formic acid alone will strip tetravalent actinides, e.g., Th(IV) from 0D[IB]CMP0, once excess HNO3 present in the organic phase is removed. Thus, formic acid with HAF and NHF affords an excellent method for stripping all the actinides from these very powerful CMP extractants. Under the above conditions Am(III) and Cm(III) present in... [Pg.438]

Conceptual Flowsheet for the Extraction of Actinides from HLLW. Figure 5 shows a conceptual flowsheet for the extraction of all the actinides (U, Np, Pu, Am, and Cm) from HLLW using 0.4 M 0< >D[IB]CMP0 in DEB. The CMPO compound was selected for this process because of the high D m values attainable with a small concentration of extractant and because of the absence of macro-concentrations of uranyl ion. Distribution ratios relevant to the flowsheet are shown in previous tables, IV, V, VI, and VII and figures 1 and 2. One of the key features of the flowsheet is that plutonium is extracted from the feed solution and stripped from the organic phase without the addition of any nitric acid or use of ferrous sulfamate. However, oxalic acid is added to complex Zr and Mo (see Table IV). The presence of oxalic acid reduces any Np(VI) to Np(IV) (15). The presence of ferrous ion, which is... [Pg.439]


See other pages where Acidity actinides is mentioned: [Pg.466]    [Pg.209]    [Pg.37]    [Pg.466]    [Pg.209]    [Pg.37]    [Pg.413]    [Pg.458]    [Pg.208]    [Pg.214]    [Pg.215]    [Pg.221]    [Pg.80]    [Pg.467]    [Pg.205]    [Pg.196]    [Pg.202]    [Pg.41]    [Pg.333]    [Pg.338]    [Pg.1275]    [Pg.731]    [Pg.77]    [Pg.911]    [Pg.372]    [Pg.429]    [Pg.438]   
See also in sourсe #XX -- [ Pg.276 , Pg.297 ]




SEARCH



Actinide complexes amino acids

Actinide complexes carboxylic acid hydrazides

Actinides acid solutions

Actinides alkyl phosphoric acids

Actinides carboxylic acids complexes

Actinides recovered from nitric acid

Actinides recovered from nitric acid waste

Alkyl phosphoric acids, actinide extractants

Hydroxamic acids actinides

Phosphoric acid actinide extracts, alkyl

Phosphoric acid actinides extraction

Phosphoric acid actinides, effect

© 2024 chempedia.info