Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylacetone extractions

Ichinaka et al. [309] determined these elements in acetylacetone extracts of potable waters by high performance liquid chromatography. [Pg.150]

Much effort has been directed to finding extractants that would remove sulphur fractions from soils for a more precise analysis, but the production of artifacts has made this difficult. However, an extraction procedure using O.OIM acetylacetone with ultrasonic dispersion looks promising, extracting from 60-90% of the total sulphur in relatively unaltered form. Further separation of the acetylacetone extract with... [Pg.383]

SCOTT N.M. and ANDERSON G. 1976. Sulphur, Carbon and Nitrogen contents of organic fractions from acetylacetone extracts of soils Journal of Soil Science, 27, 324-330. [Pg.400]

Decant the liquid layer into a 2 5 litre flask, and dissolve the sodium derivative of acetylacetone in 1600 ml. of ice water transfer the solution to the flask. Separate the impiue ethyl acetate layer as rapidly as possible extract the aqueous layer with two 200 ml. portions of ether and discard the ethereal extracts. Treat the aqueous layer with ice-cold dilute sulphimic acid (100 g. of concentrated sulphiu-ic acid and 270 g. of crushed ice) until it is just acid to htmus. Extract the diketone from the solution with four 200 ml. portions of ether. Leave the combined ether extracts standing over 40 g. of anhydrous sodium sulphate (or the equivalent quantity of anhydrous magnesium sulphate) for 24 hours in the ice chest. Decant the ether solution into a 1500 ml. round-bottomed flask, shake the desiccant with 100 ml. of sodium-dried ether and add the extract to the ether solution. Distil off the ether on a water bath. Transfer the residue from a Claisen flask with fractionating side arm (Figs. II, 24, 4r-5) collect the fraction boiling between 130° and 139°. Dry this over 5 g. of anhydrous potassium carbonate, remove the desiccant, and redistil from the same flask. Collect the pure acetji-acetone at 134r-136°. The yield is 85 g. [Pg.864]

A number of organic compounds, eg, acetylacetone [123-54-6] and cupferron [135-20-6] form compounds with aqueous actinide ions (IV state for reagents mentioned) that can be extracted from aqueous solution by organic solvents (12). The chelate complexes are especially noteworthy and, among these, the ones formed with diketones, such as 3-(2-thiophenoyl)-l,l,l-trifluoroacetone [326-91-0] (C4H2SCOCH2COCF2), are of importance in separation procedures for plutonium. [Pg.220]

If a neutral chelate formed from a ligand such as acetylacetone is sufficiently soluble in water not to precipitate, it may stiH be extracted into an immiscible solvent and thus separated from the other constituents of the water phase. Metal recovery processes (see Mineral recovery and processing), such as from dilute leach dump Hquors, and analytical procedures are based on this phase-transfer process, as with precipitation. Solvent extraction theory and many separation systems have been reviewed (42). [Pg.393]

Cobalt(II) can be separated from cobalt(III) as the acetylacetonate (acac) compounds by extraction of the ben2ene soluble cobalt(Ill) salt (14). Magnesium hydroxide has been used to selectively adsorb cobalt(Il) from an ammonia solution containing cobalt(Il) and cobalt(Ill) (15). [Pg.378]

Thenoyltrifluoroacetone(TTA), C4H3S,CO,CH2,COCF3. This is a crystalline solid, m.p. 43 °C it is, of course, a /1-diketone, and the trifluoromethyl group increases the acidity of the enol form so that extractions at low pH values are feasible. The reactivity of TTA is similar to that of acetylacetone it is generally used as a 0.1-0.5 M solution in benzene or toluene. The difference in extraction behaviour of hafnium and zirconium, and also among lanthanides and actinides, is especially noteworthy. [Pg.170]

Other fluorinated derivatives of acetylacetone are trifluoroacetylacetone (CF3COCH2COCH3) and hexafluoroacetylacetone (CF3COCH2COCF3), which form stable volatile chelates with aluminium, beryllium, chromium(III) and a number of other metal ions. These reagents have consequently been used for the solvent extraction of such metal ions, with subsequent separation and analysis by gas chromatography [see Section 9.2(2)]. [Pg.170]

Sample. The solvent extraction of aluminium from aqueous solution using acetylacetone can provide a suitable sample solution for gas chromatographic analysis. [Pg.249]

Take 5mL of a solution containing about 15 mg of aluminium and adjust the pH to between 4 and 6. Equilibrate the solution for 10 minutes with two successive 5 mL portions of a solution made up of equal volumes of acetylacetone (pure, redistilled) and chloroform. Combine the organic extracts. Fluoride ion causes serious interference to the extraction and must be previously removed. [Pg.249]

Rydberg, J., Studies on the extraction of metal complexes. IX. The distribution of acetylacetone between chloroform orhexone and water, Sv. Kem. Tidskr. 65,37 43 (1953). [Pg.268]

Crystals of [Tc(tu)6]Cl3 or [TcCl(tu)5]Cl2 are often employed for the synthesis of technetium(III) complexes. However, since the direct reduction of pertechnetate with excess thiourea in a hydrochloric acid solution yields [Tc(tu)6]3+ in high yield [37], direct use of the aqueous solution of the thiourea complex would be preferable for the synthesis of the technetium(III) complex without isolation of the crystals of the thiourea complex. In fact, technetium could be extracted from the aqueous solution of the Tc-thiourea complex with acetylacetone-benzene solution in two steps [38]. More than 95% extraction of technetium was attained using the following procedure [39] First a pertechnetate solution was added to a 0.5 M thiourea solution in 1 M hydrochloric acid. The solution turned red-orange as the Tc(III)-thiourea complex formed. Next, a benzene solution containing a suitable concentration of acetylacetone was added. After the mixture was shaken for a sufficient time (preliminary extraction), the pH of the aqueous phase was adjusted to 4.3 and the aqueous solution was shaken with a freshly prepared acetylacetonebenzene solution (main extraction). The extraction behavior of the technetium complex is shown in Fig. 6. The chemical species extracted into the organic phase seemed to differ from tris(acetylacetonato)technetium(III). Kinetic analysis of the two step extraction mechanism showed that the formation of 4,6-dimethylpyrimidine-... [Pg.268]

Fig. 6. Dependence of the distribution ratio on time at various concentrations of acetylacetone in a preliminary extraction (preliminary extraction pH 0/ main extraction pH 4.3, [Hacac] = 0.5 M) ... Fig. 6. Dependence of the distribution ratio on time at various concentrations of acetylacetone in a preliminary extraction (preliminary extraction pH 0/ main extraction pH 4.3, [Hacac] = 0.5 M) ...
The elastomers crosslinked with LHT-240, including the Tri-NCO formulation, contained 0.03% dibutyltin dilaurate as a curing catalyst and were cured in closed molds (see below) for 8 hours at 100°C. Preliminary experiments showed that such a formulation after cure for either 4 or 8 hours at 100°C swelled the same amount in benzene and contained the same amount of extractable material, termed sol. The elastomer crosslinked with TIPA contained 0.02% ferric acetylacetonate as catalyst and was cured for 24 hours at 60°C. This formulation after cure for either 24 or 48 hours was found to swell the same amount in benzene. [Pg.421]

Other methods reported for the determination of beryllium include UV-visible spectrophotometry [80,81,83], gas chromatography (GC) [82], flame atomic absorption spectrometry (AAS) [84-88] and graphite furnace (GF) AAS [89-96]. The ligand acetylacetone (acac) reacts with beryllium to form a beryllium-acac complex, and has been extensively used as an extracting reagent of beryllium. Indeed, the solvent extraction of beryllium as the acety-lacetonate complex in the presence of EDTA has been used as a pretreatment method prior to atomic absorption spectrometry [85-87]. Less than 1 p,g of beryllium can be separated from milligram levels of iron, aluminium, chromium, zinc, copper, manganese, silver, selenium, and uranium by this method. See also Sect. 5.74.9. [Pg.142]

Acetylacetone (AcAc) is a chelating agent for many metals. 50 cm3 of an aqueous solution of M2+ (5 x 10 3 M) is equilibrated with 20 cm3 of ether containing an excess of AcAc. If 94% of M is extracted into the ether, calculate the value of the distribution ratio given that M2+ + 2AcAcr —> M (AcAc)2 is the only reaction. [Pg.188]

Reaction with chelating agents. Such reactions have been used primarily for partial dealumination of Y zeolites. In 1968, Kerr (8,21) reported the preparation of aluminum-deficient Y zeolites by extraction of aluminum from the framework with EDTA. Using this method, up to about 50 percent of the aluminum atoms was removed from the zeolite in the form of a water soluble chelate, without any appreciable loss in zeolite crystallinity. Later work (22) has shown that about 80 percent of framework aluminum can be removed with EDTA, while the zeolite maintains about 60 to 70 percent of its initial crystallinity. Beaumont and Barthomeuf (23-25) used acetylacetone and several amino-acid-derived chelating agents for the extraction of aluminum from Y zeolites. Dealumination of Y zeolites with tartaric acid has also been reported (26). A mechanism for the removal of framework aluminum by EDTA has been proposed by Kerr (8). It involves the hydrolysis of Si-O-Al bonds, similar to the scheme in Figure 1A, followed by formation of a soluble chelate between cationic, non-framework aluminum and EDTA. [Pg.162]

After some hours the blue-green compound of copper and acetylacetone is separated by filtration with suction, washed twice with water, transferred directly from the filter funnel to a separating funnel, and, after being covered with ether, decomposed by continuous shaking with 50 c.c. of 42V-sulphuric acid. The ethereal solution is separated and the acid layer is extracted with ether the extract is then combined with the ethereal solution, which is now dried over calcium chloride. After the ether has been removed by distillation the diketone is likewise distilled. The bulk of the material passes over at 125°-140° and, on repeating the distillation, at 135°-140°. The boiling point of the completely pure substance is 139°. Yield 15-20 g. [Pg.253]

Saito, N., Ikushima, Y. and Goto, T. Bull. Chem. Soc. Japan 63 (1990) 1532-1534. Liquid-solid extraction of acetylacetone chelates with supercritical carbon dioxide. [Pg.769]

Fig. 4.10 Extraction of Cu(II) from 1 M NaC104 into benzene as a function of pH (large figure) and of free acetylacetonate ion concentration (insert) at seven different total concentrations of acetylacetone ([HA]aq 0.05-0.0009 M). (From Ref. 18.)... [Pg.149]

Fig. 4.12 Enhancement of Zn(ll) extraction, D Do, from 1 M NaC104 into carbon tetrachloride containing the complexing extractants acetylacetone (O), trifluoroacetone (A), or hexafluoroacetone ( ) as a function of the concentration of the adduct former trioctyl phosphine oxide (B). The curves are fitted with Eq. (4.50) using the constants log Km = 3.01 (AA), 6.70 (TEA), 7.0 (TEA), and Km = 4.66 (AA), nil (TEA), 11.6 (HEA). (Erom Ref. 24.)... Fig. 4.12 Enhancement of Zn(ll) extraction, D Do, from 1 M NaC104 into carbon tetrachloride containing the complexing extractants acetylacetone (O), trifluoroacetone (A), or hexafluoroacetone ( ) as a function of the concentration of the adduct former trioctyl phosphine oxide (B). The curves are fitted with Eq. (4.50) using the constants log Km = 3.01 (AA), 6.70 (TEA), 7.0 (TEA), and Km = 4.66 (AA), nil (TEA), 11.6 (HEA). (Erom Ref. 24.)...
Fig. 4.15 The system La(III) acetylacetone (HA) - IM NaC104/benzene at 25°C as a function of lanthanide atomic number Z. (a) The distribution ratio Hl (stars, right axis) at [A ] = 10 and [HA] rg = 0.1 M, and extraction constants (crosses, left axis) for the reaction Ln + 4HA(org) LnA3HA(org) + 3FE. (b) The formation constants, K , for formation of LnA " lanthanide acetylacetonate complexes (a break at 64Gd is indicated) circles n = 1 crosses n = 2 triangles w = 3 squares w = 4. (c) The self-adduct formation constants, for the reaction of LnA3(org) + HA(org) LnA3HA(org) for org = benzene. (A second adduct, LnA3(HA)2, also seems to form for the lightest Ln ions.) (d) The distribution constant Ajc for hydrated lanthanum triacetylacetonates, LnAs (H20)2 3, between benzene and IM NaC104. (From Ref. 28.)... Fig. 4.15 The system La(III) acetylacetone (HA) - IM NaC104/benzene at 25°C as a function of lanthanide atomic number Z. (a) The distribution ratio Hl (stars, right axis) at [A ] = 10 and [HA] rg = 0.1 M, and extraction constants (crosses, left axis) for the reaction Ln + 4HA(org) LnA3HA(org) + 3FE. (b) The formation constants, K , for formation of LnA " lanthanide acetylacetonate complexes (a break at 64Gd is indicated) circles n = 1 crosses n = 2 triangles w = 3 squares w = 4. (c) The self-adduct formation constants, for the reaction of LnA3(org) + HA(org) LnA3HA(org) for org = benzene. (A second adduct, LnA3(HA)2, also seems to form for the lightest Ln ions.) (d) The distribution constant Ajc for hydrated lanthanum triacetylacetonates, LnAs (H20)2 3, between benzene and IM NaC104. (From Ref. 28.)...
Solvent extraction has become a common technique for the determination of formation constants, P , of aqneons hydrophilic metal complexes of type MX , particularly in the case when the metal is only available in trace concentrations, as the distribntion can easily be measnred with radioactive techniques (see also section 4.15). The method reqnires the formation of an extractable complex of the metal ion, which, in the simplest and most commonly used case, is an nn-charged lipophilic complex of type MA. The metal-organic complex MA serves as a probe for the concentration of metal ions in the aqueous phase through its equilibrium with the free section 4.8.2. This same principle is used in the design of metal selective electrodes (see Chapter 15). Extractants typically used for this purpose are P-diketones like acetylacetone (HAA) or thenoyltrifluoroacteone (TTA), and weak large organic acids like dinonyl naph-talene sulphonic acid (DNNA). [Pg.171]


See other pages where Acetylacetone extractions is mentioned: [Pg.444]    [Pg.458]    [Pg.444]    [Pg.458]    [Pg.11]    [Pg.843]    [Pg.863]    [Pg.87]    [Pg.169]    [Pg.175]    [Pg.75]    [Pg.99]    [Pg.208]    [Pg.17]    [Pg.209]    [Pg.843]    [Pg.863]    [Pg.210]    [Pg.63]    [Pg.137]    [Pg.138]    [Pg.148]    [Pg.148]    [Pg.159]    [Pg.160]   
See also in sourсe #XX -- [ Pg.456 ]




SEARCH



Acetylacetonate

Acetylacetone

Acetylacetone, solvent extraction

Acetylacetone, solvent extraction metals

Acetylacetone. extraction with

Acetylacetones

© 2024 chempedia.info