Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical carbon

Supercritical carbon dioxide introduces changes in the selectivity of the reactions. These changes include chemical selectivity, as well as stereoselectivity. The selectivity changes originate from the solvent as well as the modification of the catalysts with the carbon supercritical carbon dioxide. [Pg.2918]

Fractional solution Anhy(hic carbonic Supercritical fluid extraction 647... [Pg.1850]

Teflon PFA [FLUORINE COMPOUNDS, ORGANIC - TETHAFLUOROETHYLENE-PERFLUOROVINYLETHERCOPOLYPffiRS] (Vol 11) -organic mat ls in carbon dioxide [SUPERCRITICAL FLUIDS] (Vol 23)... [Pg.337]

It is less well known, but certainly no less important, that even with carbon dioxide as a drying agent, the supercritical drying conditions can also affect the properties of a product. Eor example, in the preparation of titania aerogels, temperature, pressure, the use of either Hquid or supercritical CO2, and the drying duration have all been shown to affect the surface area, pore volume, and pore size distributions of both the as-dried and calcined materials (34,35). The specific effect of using either Hquid or supercritical CO2 is shown in Eigure 3 as an iHustration (36). [Pg.3]

Fig. 3. Effect of using either liquid or supercritical carbon dioxide on the textural properties of titania aerogels calcined at the temperatures shown. (—), dried with Hquid carbon dioxide at 6 MPa and 283 K (-------), dried with supercritical carbon dioxide at 30 MPa and 323 K. Reproduced from Ref. 36. Fig. 3. Effect of using either liquid or supercritical carbon dioxide on the textural properties of titania aerogels calcined at the temperatures shown. (—), dried with Hquid carbon dioxide at 6 MPa and 283 K (-------), dried with supercritical carbon dioxide at 30 MPa and 323 K. Reproduced from Ref. 36.
Supercritical Extraction. The use of a supercritical fluid such as carbon dioxide as extractant is growing in industrial importance, particularly in the food-related industries. The advantages of supercritical fluids (qv) as extractants include favorable solubiHty and transport properties, and the abiHty to complete an extraction rapidly at moderate temperature. Whereas most of the supercritical extraction processes are soHd—Hquid extractions, some Hquid—Hquid extractions are of commercial interest also. For example, the removal of ethanol from dilute aqueous solutions using Hquid carbon dioxide... [Pg.70]

Highly pure / -hexane is used to extract oils from oilseeds such as soybeans, peanuts, sunflower seed, cottonseed, and rapeseed. There has been some use of hydrocarbons and hydrocarbon-derived solvents such as methylene chloride to extract caffein from coffee beans, though this use is rapidly being supplanted by supercritical water and/or carbon dioxide, which are natural and therefore more acceptable to the pubHc. [Pg.368]

Natural Products. Various methods have been and continue to be employed to obtain useful materials from various parts of plants. Essences from plants are obtained by distillation (often with steam), direct expression (pressing), collection of exudates, enfleurage (extraction with fats or oils), and solvent extraction. Solvents used include typical chemical solvents such as alcohols and hydrocarbons. Liquid (supercritical) carbon dioxide has come into commercial use in the 1990s as an extractant to produce perfume materials. The principal forms of natural perfume ingredients are defined as follows the methods used to prepare them are described in somewhat general terms because they vary for each product and suppHer. This is a part of the industry that is governed as much by art as by science. [Pg.76]

Phase Behavior. One of the pioneering works detailing the phase behavior of ternary systems of carbon dioxide was presented ia the early 1950s (12) and consists of a compendium of the solubiHties of over 260 compounds ia Hquid (21—26°C) carbon dioxide. This work contains 268 phase diagrams for ternary systems. Although the data reported are for Hquid CO2 at its vapor pressure, they yield a first approximation to solubiHties that may be encountered ia the supercritical region. Various additional sources of data are also available (1,4,7,13). [Pg.221]

The fugacity coefficient of thesolid solute dissolved in the fluid phase (0 ) has been obtained using cubic equations of state (52) and statistical mechanical perturbation theory (53). The enhancement factor, E, shown as the quantity ia brackets ia equation 2, is defined as the real solubiUty divided by the solubihty ia an ideal gas. The solubiUty ia an ideal gas is simply the vapor pressure of the sohd over the pressure. Enhancement factors of 10 are common for supercritical systems. Notable exceptions such as the squalane—carbon dioxide system may have enhancement factors greater than 10. Solubihty data can be reduced to a simple form by plotting the logarithm of the enhancement factor vs density, resulting ia a fairly linear relationship (52). [Pg.225]

FoodApphca.tlons, Carbon dioxide, a nontoxic material, can be used to extract thermally labde food components at near-ambient temperatures. The food product is thus not contaminated with residual solvent, as is potentially the case when usiag coaveatioaal Hquid solveats such as methylene chloride or hexane. In the food iadustry, CO2 is not recorded as a foreign substance or additive. Supercritical solvents not only can remove oils, caffeiae, or cholesterol from food substrates, but can also be used to fractionate mixtures such as glycerides and vegetable oils iato aumerous compoaeats. [Pg.226]

Gas AntisolventRecrystallizations. A limitation to the RESS process can be the low solubihty in the supercritical fluid. This is especially evident in polymer—supercritical fluid systems. In a novel process, sometimes termed gas antisolvent (GAS), a compressed fluid such as CO2 can be rapidly added to a solution of a crystalline soHd dissolved in an organic solvent (114). Carbon dioxide and most organic solvents exhibit full miscibility, whereas in this case the soHd solutes had limited solubihty in CO2. Thus, CO2 acts as an antisolvent to precipitate soHd crystals. Using C02 s adjustable solvent strength, the particle size and size distribution of final crystals may be finely controlled. Examples of GAS studies include the formation of monodisperse particles (<1 fiva) of a difficult-to-comminute explosive (114) recrystallization of -carotene and acetaminophen (86) salt nucleation and growth in supercritical water (115) and a study of the molecular thermodynamics of the GAS crystallization process (21). [Pg.228]

Supercritical Fluid Chromatography. Supercritical fluid chromatography (sfc) combines the advantages of gc and hplc in that it allows the use of gc-type detectors when supercritical fluids are used instead of the solvents normally used in hplc. Carbon dioxide, -petane, and ammonia are common supercritical fluids (qv). For example, carbon dioxide (qv) employed at 7.38 MPa (72.9 atm) and 31.3°C has a density of 448 g/mL. [Pg.247]


See other pages where Supercritical carbon is mentioned: [Pg.108]    [Pg.632]    [Pg.108]    [Pg.1896]    [Pg.108]    [Pg.632]    [Pg.108]    [Pg.1896]    [Pg.206]    [Pg.780]    [Pg.789]    [Pg.789]    [Pg.789]    [Pg.794]    [Pg.2]    [Pg.2]    [Pg.3]    [Pg.3]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.7]    [Pg.8]    [Pg.230]    [Pg.230]    [Pg.8]    [Pg.88]    [Pg.130]    [Pg.546]    [Pg.191]    [Pg.370]    [Pg.219]    [Pg.222]    [Pg.224]    [Pg.225]    [Pg.226]    [Pg.227]    [Pg.227]    [Pg.227]    [Pg.229]    [Pg.373]    [Pg.242]   
See also in sourсe #XX -- [ Pg.109 ]

See also in sourсe #XX -- [ Pg.157 , Pg.230 , Pg.415 ]

See also in sourсe #XX -- [ Pg.97 , Pg.110 ]

See also in sourсe #XX -- [ Pg.157 , Pg.230 , Pg.415 ]

See also in sourсe #XX -- [ Pg.343 ]

See also in sourсe #XX -- [ Pg.11 , Pg.637 ]

See also in sourсe #XX -- [ Pg.164 ]




SEARCH



© 2024 chempedia.info