Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetyl-enzyme complex

Serine peptidases can hydrolyze both esters and amides, but there are marked differences in the kinetics of hydrolysis of the two types of substrates as monitored in vitro. Thus, the hydrolysis of 4-nitrophenyl acetate by a-chy-motrypsin occurs in two distinct phases [7] [22-24]. When large amounts of enzyme are used, there is an initial rapid burst in the production of 4-nitro-phenol, followed by its formation at a much slower steady-state rate (Fig. 3.7). It was shown that the initial burst of 4-nitrophenol corresponds to the formation of the acyl-enzyme complex (acylation step). The slower steady-state production of 4-nitrophenol corresponds to the hydrolysis of the acetyl-enzyme complex, regenerating the free enzyme. This second step, called deacylation, is much slower than the first, so that it determines the overall rate of ester hydrolysis. The rate of the deacylation step in ester hydrolysis is pH-dependent and can be slowed to such an extent that, at low pH, the acyl-enzyme complex can be isolated. [Pg.73]

Although OPPs and carbamates exhibit very similar modes of action in various animal species, i.e, acetylcholinesterase inhibition in the CNS with resulting paralysis—there is an important difference between the two classes of pesticides. Carbamates do not require metabolic conversion prior to exhibiting their toxicity. Furthermore the enzyme activity may at times be rapidly regenerated by reversal of inhibition. The kinetics of the inhibition (carbamoylation) reaction have been well studied in it electrophilic carbamoyl moieties form covalent bonds with enzyme esteratic sites. This is followed by carbamate transfer of an acidic group to the site to yield the acetylated enzyme complex (ref. 176). [Pg.393]

The inhibition of the activity of ChEs by OPs and CBs proceeds in a manner similar to the action of the enzymes on ACh. However, instead of forming a rapidly hydrolyzed acetyl-enzyme complex, the OPs... [Pg.595]

The biosynthesis of polyketides (including chain initiation, elongation, and termination processes) is catalyzed by large multi-enzyme complexes called polyketide synthases (PKSs). The polyketides are synthesized from starter units such as acetyl-CoA, propionyl-CoA, and other acyl-CoA units. Extender units such as malonyl-CoA and methylmalonyl-CoA are repetitively added via a decarboxylative process to a growing carbon chain. Ultimately, the polyketide chain is released from the PKS by cleavage of the thioester, usually accompanied by chain cyclization [49]. [Pg.268]

Organophosphate and carbamate pesticides are potent inhibitors of the enzyme cholinesterase. The inhibition of cholinesterase activity by the pesticide leads to the formation of stable covalent intermediates such as phosphoryl-enzyme complexes, which makes the hydrolysis of the substrate very slow. Both organophosphorus and carbamate pesticides can react with AChE in the same manner because the acetylation of the serine residue at the catalytic center is analogous to phosphorylation and carbamylation. Carbamated enzyme can restore its catalytic activity more rapidly than phosphorylated enzyme [17,42], Kok and Hasirci [43] reported that the total anti-cholinesterase activity of binary pesticide mixtures was lower than the sum of the individual inhibition values. [Pg.58]

By 1960 it was clear that acetyl CoA provided its two carbon atoms to the to and co—1 positions of palmitate. All the other carbon atoms entered via malonyl CoA (Wakil and Ganguly, 1959 Brady et al. 1960). It was also known that 3H-NADPH donated tritium to palmitate. It had been shown too that fatty acid synthesis was very susceptible to inhibition by p-hydroxy mercuribenzoate, TV-ethyl maleimide, and other thiol reagents. If the system was pre-incubated with acetyl CoA, considerable protection was afforded against the mercuribenzoate. In 1961 Lynen and Tada suggested tightly bound acyl-S-enzyme complexes were intermediates in fatty acid synthesis in the yeast system. The malonyl-S-enzyme complex condensed with acyl CoA and the B-keto-product reduced by NADPH, dehydrated, and reduced again to yield the (acyl+2C)-S-enzyme complex. Lynen and Tada thought the reactions were catalyzed by a multifunctional enzyme system. [Pg.122]

PDH is a multi-enzyme complex consisting of three separate enzyme units pyruvate decarboxylase, transacetylase and dihydrolipoyl dehydrogenase. Serine residues within the decarboxylase subunit are the target for a kinase which causes inhibition of the PDH the inhibition can be rescued by a phosphatase. The PDH kinase (PDH-K) is itself activated, and the phosphatase reciprocally inhibited, by NADH and acetyl-CoA. Figure 3.12(a and b) show the role and control of PDH. [Pg.75]

Fatty acid and triglyceride (triacylglycerol) synthesis acetyl-CoA carboxylase and fatty acid synthase multi-enzyme complex... [Pg.180]

The fatty acid synthesis pathway can be seen to occur in two parts. An initial priming stage in which acetyl-CoA is converted to malonyl-CoA by a carboxylation reaction (Figure 6.9) is followed by a series of reactions which occur on a multi-enzyme complex (MEC), which achieves chain elongation forming C16 palmitoyl-CoA. The whole process occurs in the cytosol. [Pg.180]

The nucleophile in biological Claisen reactions that effectively adds on acetyl-CoA is almost always malonyl-CoA. This is synthesized from acetyl-CoA by a reaction that utilizes a biotin-enzyme complex to incorporate carbon dioxide into the molecule (see Section 15.9). This has now flanked the a-protons with two carbonyl groups, and increases their acidity. The enzymic Claisen reaction now proceeds, but, during the reaction, the added carboxyl is lost as carbon dioxide. Having done its job, it is immediately removed. In contrast to the chemical analogy, a carboxylated intermediate is not formed. Mechanistically, one could perhaps write a concerted decarboxylation-nucleophilic attack, as shown. An alternative rationalization is that decarboxylation of the malonyl ester is used by the enzyme to effectively generate the acetyl enolate anion without the requirement for a strong base. [Pg.393]

The whole process is multi-step, and catalysed by the pyruvate dehydrogenase enzyme complex, which has three separate enzyme activities. Dnring the transformation, an acetyl group is effectively removed from pyruvate, and passed via carriers thiamine... [Pg.585]

Now this reaction is effectively a repeat of the pyruvate acetyl-CoA oxidative decarboxylation we saw at the beginning of the Krebs cycle. It similarly requires thiamine diphosphate, lipoic acid, coenzyme A and NAD+. A further feature in common with that reaction is that 2-oxoglutarate dehydrogenase is also an enzyme complex comprised of three separate enzyme activities. 2-Oxoglutarate is thus transformed into succinyl-CoA, with the loss of... [Pg.587]

Fixation of carbon dioxide by biotin-enzyme complexes is not unique to acetyl-CoA, and another important example occurs in the generation of oxaloacetate from pyravate in the synthesis of glucose from non-carbohydrate sources (gluconeogene-sis). This reaction also allows replenishment of Krebs... [Pg.610]

This enzyme complex [EC 2.3.1.85] catalyzes the conversion of acetyl-CoA, n moles malonyl-CoA, and 2n moles of NADPH to yield long-chain fatty acids, plus (n+1)... [Pg.278]

The biosynthesis of fatty acids such as palmitate thus requires acetyl-CoA and the input of chemical energy7 in two forms the group transfer potential of ATP and the reducing power of NADPH. The ATP is required to attach C02 to acetyl-CoA to make malonyl-CoA the NADPH is required to reduce the double bonds. We return to the sources of acetyl-CoA and NADPH soon, but first let s consider the structure of the remarkable enzyme complex that catalyzes the synthesis of fatty acids. [Pg.793]

Reactions of the TCA cycle Enzyme that oxidatively decarboxylates pyruvate, its coenzymes, activators, and inhibitors REACTIONS OF THE TRICARBOXYLIC ACID CYCLE (p. 107) Pyruvate is oxidatively decarboxylated by pyruvate dehydrogenase complex producing acetyl CoA, which is the major fuel for the tricarboxylic acid cycle (TCA cycle). The irreversible set of reactions catalyzed by this enzyme complex requires five coenzymes thiamine pyrophosphate, lipoic acid, coenzyme A (which contains the vitamin pantothenic acid), FAD, and NAD. The reaction is activated by NAD, coenzyme A, and pyruvate, and inhibited by ATP, acetyl CoA, and NADH. [Pg.477]

In the oxidative branch of malate dismutation, malic enzyme oxidizes malate to pyruvate, which is then further oxidized to acetyl-CoA by pyruvate dehydrogenase, an enzyme complex specially adapted to anaerobic functioning in Ascaris suum and possibly in other parasitic helminths like the trematode F. hepatica and the cestode Dipylidium caninum (Diaz and Komuniecki, 1994 Klingbeil et al., 1996). Parasitic helminths like F. hepatica use an acetate succinate CoA-transferase (ASCT) for... [Pg.391]

Compared with typical aerobic mitochondria, the three main distinctions of these anaerobic mitochondria are (i) the enzyme catalyzing the conversion of fumarate to succinate (ii) the quinone that connects this electron transfer to the enzyme complex in the electron-transport chain and (iii) the presence of ASCT, which converts acetyl-CoA into acetate. These characteristic features of anaerobically functioning... [Pg.395]

Claisen reactions involving acetyl-CoA are made even more favourable by first converting acetyl-CoA into malonyl-CoA by a carboxylation reaction with CO2 using ATP and the coenzyme biotin (Figure 2.9). ATP and CO2 (as bicarbonate, HC03-) form the mixed anhydride, which car-boxy lates the coenzyme in a biotin-enzyme complex. Fixation of carbon dioxide by biotin-enzyme complexes is not unique to acetyl-CoA, and another important example occurs in the generation of oxaloacetate from pyruvate in the synthesis of glucose from non-carbohydrate sources... [Pg.17]

The biosynthesis of polyketides is analogous to the formation of long-chain fatty acids catalyzed by the enzyme fatty acid synthase (FAS). These FASs are multi-enzyme complexes that contain numerous enzyme activities. The complexes condense coenzyme A (CoA) thioesters (usually acetyl, propionyl, or malonyl) followed by a ketoreduction, dehydration, and enoylreduction of the [3-keto moiety of the elongated carbon chain to form specific fatty acid products. These subsequent enzyme activities may or may not be present in the biosynthesis of polyketides. [Pg.388]

Pyruvate produced by the glycolytic pathway may be transported into the mitochondria (via an antiport with OH"), where it is converted to acetyl-CoA by the action of the enzyme complex pyruvate dehydrogenase. The pertinent enzyme activities are pyruvate dehydrogenase (PD), lipoic acid acetyltransferase, and dihydrolipoic acid dehydrogenase. In addition, several cofactors are utilized thiamine pyrophosphate (TPP), lipoic acid, NAD+, Co A, and FAD. Only Co A and NAD+ are used in stoichiometric amounts, whereas the others are required in catalytic amounts. Arsenite and Hg2+ are inhibitors of this system. The overall reaction sequence may be represented by Figure 18.5. The NADH generated may enter the oxidative phosphorylation pathway to generate three ATP molecules per NADH molecule reduced. The reaction is practically irreversible its AGq = -9.4 kcal/mol. [Pg.471]

The mammalian enzyme complex is even larger, containing almost 200 polypeptide chains to give a molecular weight of over 7 x 106. As well as the enzymatic activities described above, the mammalian complex contains two further enzymes which act as regulators by catalyzing phosphorylation/dephosphorylation of pyruvate decarboxylase in response to the metabolic demand the complex is activated by dephosphorylation when there is a need for the product acetyl-CoA and inactivated by phosphorylation when acetyl-CoA is not required. [Pg.116]

Enzyme complexes performing similar or identical tasks can vary widely between species. An excellent example is the enzyme complex, fatty acid synthase, which catalyzes the synthesis of fatty acids from acetyl-CoA and involves seven catalytic steps (Chap. 13). In E. coli and most bacteria the complex consists of seven different enzymes. In more advanced bacteria and in eukaryotic cells there are fewer types of subunit. For example, the yeast enzyme is a multienzyme complex (Mr = 2.3 x 106) with just two types of subunit (A and B) and a stoichiometry of A Bg. The subunits are multicatalytic. Subunit A (Mr = 185,000) has three catalytic activities and subunit B (Mr = 175,000) has the remaining four. The mammalian liver complex is a dimer, with each subunit... [Pg.116]


See other pages where Acetyl-enzyme complex is mentioned: [Pg.313]    [Pg.313]    [Pg.667]    [Pg.326]    [Pg.140]    [Pg.173]    [Pg.203]    [Pg.214]    [Pg.197]    [Pg.123]    [Pg.132]    [Pg.201]    [Pg.97]    [Pg.346]    [Pg.605]    [Pg.605]    [Pg.605]    [Pg.683]    [Pg.790]    [Pg.112]    [Pg.264]    [Pg.1626]    [Pg.287]    [Pg.287]    [Pg.62]    [Pg.1504]    [Pg.341]    [Pg.794]   
See also in sourсe #XX -- [ Pg.346 , Pg.347 ]




SEARCH



Acetyl complex

Acetyl-enzyme

Acetylation enzymic

© 2024 chempedia.info