Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetophenone, production

If quenching is a diffusion-controlled process (k 3xl09L mol 1 s ), the lifetime t 3x 10-7 s coincides with the lifetime of triplet acetophenone (product of peroxyl radical disproportionation in oxidized ethylbenzene). [Pg.96]

Scheme 8-9 shows a simple illustration of the concept for acetophenone production by oxidation of the corresponding alcohol a-phenylethanol [7]. The older oxidation with chromium oxide leads to some side products and the atom efficiency is only 42%. Modern homogeneous or heterogeneous catalyzed oxidation results in an atom efficiency of 87% (MW 120 + 18 (water) =138 120/138 = 0.87). [Pg.283]

Very recently, Reiser showed that a his(isonitrile) ligand forms robust Pd(II) complexes for the direct Wacker oxidation of alkenes without Cu co-catalysts under 1 atm of O2 at 70°C. The catal5dic system showed good activity towards terminal aliphatic alkenes, hut also styrene substrates, which are usually more challenging substrates for this kind of oxidation because of the competitive double-bond cleavage under oxidative conditions reacting readily, favoring the acetophenone products and concomitant formation of benzaldehydes as side products in 4-20% yield (Scheme 23.48). [Pg.728]

Acetanilide from acetophenone. Dissolve 12 g. of acetophenone in 100 ml. of glacial acetic acid containing 10 g. of concentrated sulphuric acid. To the stirred solution at 60-70°, add 9 8 g. of sodium azide in small portions at such a rate that the temperature does not rise above 70°. Stir the mixture with gentle heating until the evolution of nitrogen subsides (2-3 hours) and then allow to stand overnight at room temperature. Pour the reaction mixture on to 300 g. of crushed ice, filter the solid product, wash it with water and dry at 100°. The yield of crude acetanilide, m.p. 111-112°, is 13 g. Recrystallisation from water raises the m.p. to 114°. [Pg.919]

When an alkyl aryl ketone is heated with yellow ammonium polysulphide solution at an elevated temperature, an aryl substituted aliphatic acid amide is foimed the product actually isolated is the amide of the ci-aryl carboxylic acid together with a smaller amount of the corresponding ammonium salt of the oarboxylio acid. Thus acetophenone affords phenylacetamide (50 per cent.) and ammonium phenylacetate (13 per cent.) ... [Pg.923]

Similarly, the A-mesitylbydrazone of acetophenone gives 2-phcnyl-4,5,7-trimethylindole as a minor product (10%)[5]. 2,4,6-Trialkylphenylhydrazones have also been observed to give 5,6,7-trialkylindoles as the result of a formal 3a 6 shift[6]. These reactions probably occur via a 1,5-shift followed by a 1,2-shift. [Pg.64]

Acetophenone is the isolated product it is formed from its enol by proton transfers ... [Pg.819]

After cleavage the reaction mass is a mixture of phenol, acetone, and a variety of other products such as cumylphenols, acetophenone, dimethyl-phenylcarbinol, a-methylstyrene, and hydroxyacetone. It may be neutralised with a sodium phenoxide solution (20) or other suitable base or ion-exchange resins. Process water may be added to facilitate removal of any inorganic salts. The product may then go through a separation and a wash stage, or go direcdy to a distillation tower. [Pg.96]

The yield of acetone from the cumene/phenol process is beUeved to average 94%. By-products include significant amounts of a-methylstyrene [98-83-9] and acetophenone [98-86-2] as well as small amounts of hydroxyacetone [116-09-6] and mesityl oxide [141-79-7]. By-product yields vary with the producer. The a-methylstyrene may be hydrogenated to cumene for recycle or recovered for monomer use. Yields of phenol and acetone decline by 3.5—5.5% when the a-methylstyrene is not recycled (21). [Pg.96]

Sales demand for acetophenone is largely satisfied through distikative by-product recovery from residues produced in the Hock process for phenol (qv) manufacture. Acetophenone is produced in the Hock process by decomposition of cumene hydroperoxide. A more selective synthesis of acetophenone, by cleavage of cumene hydroperoxide over a cupric catalyst, has been patented (341). Acetophenone can also be produced by oxidizing the methylphenylcarbinol intermediate which is formed in styrene (qv) production processes using ethylbenzene oxidation, such as the ARCO and Halcon process and older technologies (342,343). [Pg.501]

Acetophenone can react with formaldehyde to yield light-resistant resins which are used as additives in nitrocellulose paints. It is also used as a photoinitiator, and in the pharmaceuticals, perfumery, and pesticide industries (344). It can be hydrogenated to 1-phenylethanol which is used for the production of aromatic ester fragrances (345). Technical-grade acetophenone is available at 2.29/kg perfume-grade acetophenone was 6.50/kg in October 1994. [Pg.501]

A typical phenol plant based on the cumene hydroperoxide process can be divided into two principal areas. In the reaction area, cumene, formed by alkylation of benzene and propylene, is oxidized to form cumene hydroperoxide (CHP). The cumene hydroperoxide is concentrated and cleaved to produce phenol and acetone. By-products of the oxidation reaction are acetophenone and dimethyl benzyl alcohol (DMBA). DMBA is dehydrated in the cleavage reaction to produce alpha-methylstyrene (AMS). [Pg.288]

The most widely used process for the production of phenol is the cumene process developed and Hcensed in the United States by AHiedSignal (formerly AHied Chemical Corp.). Benzene is alkylated with propylene to produce cumene (isopropylbenzene), which is oxidized by air over a catalyst to produce cumene hydroperoxide (CHP). With acid catalysis, CHP undergoes controUed decomposition to produce phenol and acetone a-methylstyrene and acetophenone are the by-products (12) (see Cumene Phenol). Other commercial processes for making phenol include the Raschig process, using chlorobenzene as the starting material, and the toluene process, via a benzoic acid intermediate. In the United States, 35-40% of the phenol produced is used for phenoHc resins. [Pg.292]

Ultraviolet Photoinitiators. Photoinitiators are used in increasing volume for a multitude of appHcations. The most important of these are in the formulation of uv-curable inks and in the production of coatings on vinyl flooring, wood, and electronics components (28,29). The most common types of photoinitiators are phenone derivatives, for example, acetophenones and hen 7ophen ones (30). [Pg.320]

Ethylbenzene Hydroperoxide Process. Figure 4 shows the process flow sheet for production of propylene oxide and styrene via the use of ethylbenzene hydroperoxide (EBHP). Liquid-phase oxidation of ethylbenzene with air or oxygen occurs at 206—275 kPa (30—40 psia) and 140—150°C, and 2—2.5 h are required for a 10—15% conversion to the hydroperoxide. Recycle of an inert gas, such as nitrogen, is used to control reactor temperature. Impurities ia the ethylbenzene, such as water, are controlled to minimize decomposition of the hydroperoxide product and are sometimes added to enhance product formation. Selectivity to by-products include 8—10% acetophenone, 5—7% 1-phenylethanol, and <1% organic acids. EBHP is concentrated to 30—35% by distillation. The overhead ethylbenzene is recycled back to the oxidation reactor (170—172). [Pg.139]

The coproduct 1-phenylethanol from the epoxidation reactor, along with acetophenone from the hydroperoxide reactor, is dehydrated to styrene in a vapor-phase reaction over a catalyst of siUca gel (184) or titanium dioxide (170,185) at 250—280°C and atmospheric pressure. This product is then distilled to recover purified styrene and to separate water and high boiling organics for disposal. Unreacted 1-phenylethanol is recycled to the dehydrator. [Pg.140]

Reductions by NaBKt are characterized by low enthalpies of activation (8-13kcal/mol) and large negative entropies of activation (—28 to —40eu). Aldehydes are substantially more reactive than ketones, as can be seen by comparison of the rate data for benzaldehyde and acetophenone. This relative reactivity is characteristic of nearly all carbonyl addition reactions. The reduced reactivity of ketones is attributed primarily to steric effects. Not only does the additional substituent increase the steric restrictions to approach of the nucleophile, but it also causes larger steric interaction in the tetrahedral product as the hybridization changes from trigonal to tetrahedral. [Pg.471]

The reaction products are the same for both direct irradiation and acetophenone sensitization. When the reactant B is used in homochiral form, the product D is nearly racemic (6% e.e.). Relate the formation of the cyclobutanones to the more normal products of type E and E Why does the 5-aryl substituent favor formation of the cyclobutanones Give a complete mechanism for formation of D which is consistent with the stereochemical result. [Pg.786]

The rho values (2.78 overall, 3.78 for reduction to the cis product and 1.96 for reduction to the trans), determined from a study of the rates of reduction with NaBH4 of a series of 4-substituted cyclohexanones, have been interpreted as supporting a transition state late in the reaction.Other groups have observed positive rho values (2.5 to 3.1) for the reduction with NaBH4 of fluorenones and acetophenones. These results show clearly... [Pg.66]

Sensitized by Acetophenone. A -butanol solution of (114) (2.10 M) and acetophenone (0.8 M) is irradiated for 6 hr at 30° under nitrogen with a Hanau Q 81 high-pressure mercury lamp through a Pyrex-acetone filter (path length 1 cm, cut-off of wavelengths below 3270 A). Better than 98 % of the incident light is absorbed by the acetophenone. A 70% conversion of (114) to the same products as listed above is observed. The ratio (118) (120) is again -2 1. [Pg.322]

Both types of processes, 7r -assisted y, -bond cleavage and P -bonding, have been invoked to operate in the phototransformations of the aldehyde-ketone (153) to products (155), (156) and (158). The conversions have been observed at room temperature in dioxane, t-butanol, ethanol and benzene using light of wavelengths 2537 A or above 3100 A or sensitization by acetophenone. The phosphorescing excited triple state of (153) is very similar to that of testosterone acetate (114), but its reactions are too rapid... [Pg.325]

Electrochemical reduction of carbon-fliionne bonds occurs at high pH when a carbonyl group is adjacent Polaiographic reduction of a a,a-tnfluoroacetophe-none without loss of fluonne predominates in acidic media to give the alcohol and the corresponding pinacol, whereas reduction of the unprotonated ketone results in hydrogenolysis of the tnfluoromethyl group to form acetophenone as product Il] (equation 8)... [Pg.298]

As actually carried out, the mixed aldol condensation product, 1,3-diphenyl-2-propen-1-one, has been isolated in 85% yield on treating benzaldehyde with acetophenone in an aqueous ethanol solution of sodium hydroxide at 15-30°C. [Pg.775]

Acetophenone.—The Fnedel-Crafts reaction, of which this pieparation is a type, consists in the use of anhydious aluminium chlonde for effecting combination between an aromatic hydrocarbon or its deiivative on the one hand, and a halogen i,Cl 01 Bi) compound on the othei. The leaction 13 always accompanied by the evolution of hydiochloiic or hydio-bromic acid, and the product is a compound with AlCl-j, which decomposes and yields the new substance on the addition of watei. This reaction has been utilised, as in the present case, (r) for the prepaiation of ketones, in which an acid chloiide (aliphatic or aromatic) is employed,... [Pg.309]

The acid-catalyzed reaction of acetophenone with acyclic secondary amines results in the formation of the expected enamine and a rearrangement product. The latter product arises from the transfer of one of the amino N-alkyl groups to the cnamine s carbon to produce a ketimine (53a). [Pg.68]

The coupling of enamines with aromatic diazonium salts has been used for the syntheses of monoarylhydrazones of a-diketones (370,488-492) and a-ketoaldehydes (488,493). Cleavage of the initial enamine double bond and formation of the phenylhydrazone of acetone and acetophenone has been reported with the enamines of isobutyraldehyde and 2-phenylpropionalde-hyde. Rearrangement of the initial coupling product to the hydrazone tautomer is not possible in these examples. [Pg.414]


See other pages where Acetophenone, production is mentioned: [Pg.13]    [Pg.232]    [Pg.284]    [Pg.680]    [Pg.207]    [Pg.13]    [Pg.232]    [Pg.284]    [Pg.680]    [Pg.207]    [Pg.163]    [Pg.718]    [Pg.925]    [Pg.399]    [Pg.180]    [Pg.775]    [Pg.82]    [Pg.477]    [Pg.62]    [Pg.165]    [Pg.25]    [Pg.26]    [Pg.66]    [Pg.318]    [Pg.324]    [Pg.775]    [Pg.321]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



© 2024 chempedia.info