Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid, by carbonylation

Acetic Acid and Anhydride. Synthesis of acetic acid by carbonylation of methanol is another important homogeneous catalytic reaction. The Monsanto acetic acid process developed in the late 1960s is the best known variant of the process. [Pg.166]

Monsanto acetic acid A process for making acetic acid by carbonylation of methanol, catalyzed by rhodium iodide. Operated by BP. [Pg.182]

It is now nearly 40 years since the introduction by Monsanto of a rhodium-catalysed process for the production of acetic acid by carbonylation of methanol [1]. The so-called Monsanto process became the dominant method for manufacture of acetic acid and is one of the most successful examples of the commercial application of homogeneous catalysis. The rhodium-catalysed process was preceded by a cobalt-based system developed by BASF [2,3], which suffered from significantly lower selectivity and the necessity for much harsher conditions of temperature and pressure. Although the rhodium-catalysed system has much better activity and selectivity, the search has continued in recent years for new catalysts which improve efficiency even further. The strategies employed have involved either modifications to the rhodium-based system or the replacement of rhodium by another metal, in particular iridium. This chapter will describe some of the important recent advances in both rhodium- and iridium-catalysed methanol carbonylation. Particular emphasis will be placed on the fundamental organometallic chemistry and mechanistic understanding of these processes. [Pg.187]

This direct, oxidative condensation of methane to acetic acid in one-pot could be competitive with the current three-step, capital intensive process for the production of acetic acid based on methane reforming to CO, methanol synthesis from CO, and generation of acetic acid by carbonylation of methanol. Key improvements required with the PdS04/H2S04 system, however, will be to develop more stable, faster, and more selective catalysts. Although it is possible sulfuric acid could be utilized industrially as a solvent and oxidant for this reaction, it would be desirable to replace sulfuric acid with a less corrosive material. This chemistry has recently been revisited, verified, and extended by Bell et al., who used Cu(II)/02 as the oxidizing system [22],... [Pg.540]

On the scene of industrial chemistry, too, many sizable advances have occurred. Among them are processes for production of vinyl acetate from ethyl-ene/02/acetic acid over a heterogeneous Pd-catalyst the manufacture of acetic acid by carbonylation of methanol using a transition metal complex homoge-... [Pg.470]

AO Plus [Acid Optimisation Plus] A process for making acetic acid by carbonylating methanol. Based on the Monsanto Acetic Acid process, but an improved catalyst (rhodium with lithium iodide) permits operation at lower levels of water. Developed by Celanese in the 1980s and operated by that company in Clear Lake, TX. Residual iodide in the product is removed by the Silverguard process. [Pg.21]

Monsanto acetic acid A process for making acetic acid by carbonylation of methanol, catalyzed by rhodium iodide. Operated by BP. A variation of this process, the low water process, used added Group 1 metal iodides such as lithium iodide to enhance the productivity this was practiced by Celenese and by Daicel. [Pg.243]

The production of acetic acid by carbonylation of methanol (Equation (1)) can also be traced back to the 1950s when Reppe and coworkers at BASF developed a cobalt iodide catalyst that was effective for this reaction at relatively high temperatures and pressures 250 °C, 600 bar) [1,2]. [Pg.3]

Chemistry of Acetic Acid by Carbonylation. Two processes have been commercialized for the carbonylation of methanol to acetic acid. BASF understood the possibility of a methanol and carbon monoxide process for acetic acid, using a cobalt- and iodine-based catalyst, since the early 1920s. But development was held back by the lack of suitable construction materials for the severe operating conditions and corrosive environment necessary. The operating temperature is 250°C (482 F) and the required pressure is 680 bars (10,000 psig). In the late 1950s, development of molyb-... [Pg.236]

Nowadays, iodine is widely used for the manufacturing of X-ray contrast media, antimicrobial products, as tinctures of polyvinylpyrrolidone-iodine (Povidone-iodine), catalysts in chemical processes (e.g. for the production of acetic acid by carbonylation of methanol in the presence of a rhodium iodide-catalyst (Monsanto process) or an iridium iodide-catalyst (Cativa process)), and also on a smaller scale for the production of pharmaceuticals like thyroid hormones. [ 83 ]... [Pg.556]

Ca.ta.lysis, The readily accessible +1 and +3 oxidation states of rhodium make it a useful catalyst. There are several reviews of the catalytic properties of rhodium available (130—132). Rhodium-catalyzed methanol carbonylation (Monsanto process) accounted for 81% of worldwide acetic acid by 1988 (133). The Monsanto acetic acid process is carried out at 175°0 and 1.5 MPa (200 psi). Rhodium is introduced as RhCl3 but is likely reduced in a water... [Pg.180]

Rather than converting methanol direcdy to ethanol, two processes have been aimounced that go through the intermediate step of converting the methanol to acetic acid by rhodium-cataly2ed carbonylation. [Pg.408]

The formation of C-C bonds is of key importance in organic synthesis. An important catalytic methodology for generating C-C bonds is provided by carbonylation. In the bulk chemicals arena this is used for the production of acetic acid by methanol carbonylation (Eqn. (9)) in the presence of rhodium- or, more recently, iridium-based catalysts (Maitlis et al, 1998). [Pg.39]

Cativa Not a process but a catalyst for making acetic acid by the carbonylation of methanol. It contains iridium acetate with promoters. Developed by BP Chemicals at Hull, UK and announced in 1996. Used first in Texas City, TX, and planned for use in Malaysia and in Hull. [Pg.55]

Hazards Associated with Organic Chemical Manufacturing Acetic Acid by Methanol Carbonylation, Mitre Corp., McLean, VA, Report No. MTR-79W00364-01, February 1979. [Pg.13]

Acetic anhydride is also produced by the Rh-catalyzed carbonylation of methyl acetate. The method is called the Eastman process (Scheme 3.11). The Rh-catalysed production of acetic anhydride from methyl acetate can be understood by the formation of Mel and acetic acid by the reaction of methyl acetate with HI. Finally, attack of AcOH on the acetylrhodium affords the anhydride and HI, or acetyl iodide reacts with AcOH to give acetic anhydride and HI. [Pg.88]

In this chapter we discuss the mechanistic and other details of a few industrial carbonylation processes. These are carbonylation of methanol to acetic acid, methyl acetate to acetic anhydride, propyne to methyl methacrylate, and benzyl chloride to phenyl acetic acid. Both Monsanto and BASF manufacture acetic acid by methanol carbonylation, Reaction 4.1. The BASF process is older than the Monsanto process. The catalysts and the reaction conditions for the two processes are also different and are compared in the next section. Carbonylation of methyl acetate to acetic anhydride, according to reaction 4.2, is a successful industrial process that has been developed by Eastman Kodak. The carbonylation of propyne (methyl acetylene) in methanol to give methyl methacrylate has recently been commercialized by Shell. The Montedison carbonylation process for the manufacture of phenyl acetic acid from benzyl chloride is noteworthy for the clever combination of phase-transfer and organometallic catalyses. Hoechst has recently reported a novel carbonylation process for the drug ibuprofen. [Pg.55]

Acetica A process for making acetic acid by the heterogeneous carbonylation of methanol in a bubble column reactor. The catalyst is a rhodium carbonyl iodide, anchored by ion-pairing to a polyvinyl pyridine resin. Developed by Chiyoda Corporation and UOP and first described in 1998. Licensed to Guizhou Crystal Organic Chemical Group, China, in 2002 one plant was under construction in 2005. [Pg.3]

Cativa A process for making acetic acid by reacting methanol with carbon monoxide (carbonylation). The catalyst contains iridium acetate with promoters. Developed joindy by BP Chemicals, Hull, UK, and the University of Sheffield. First announced in 1996 and installed between 1995 and 1999 in four plants that had been using the former Monsanto acetic acid process. The first plant designed for the process was built by BP Petronas in Malaysia in 2000. A joint venture of BP with Sinopec used the process in a plant expansion in Chongqing, China, in 2005, and planned to build another plant in Nanjing, for completion in 2007. [Pg.65]


See other pages where Acetic acid, by carbonylation is mentioned: [Pg.65]    [Pg.323]    [Pg.4]    [Pg.844]    [Pg.65]    [Pg.323]    [Pg.4]    [Pg.844]    [Pg.195]    [Pg.126]    [Pg.33]    [Pg.1548]    [Pg.949]    [Pg.290]    [Pg.385]    [Pg.104]    [Pg.439]    [Pg.532]    [Pg.70]    [Pg.104]    [Pg.5]    [Pg.575]    [Pg.23]   


SEARCH



Acetic acid by carbonylation of methanol

Acetic acid carbonylation

Acetic carbonylation

Acidic carbonyl

By acetic acid

© 2024 chempedia.info