Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid anodic oxidation

Triaza-Compounds. 2-(Ethoxymethyleneamino)pyridine is converted into the triazolopyridine (564) by the action of hydroxylamine-O-sulphonic acid. Anodic oxidation of the hydrazone Ar NHN=CHAr (Ar =p-NO2C6H4, Ar = /7-MeC6H4) in the presence of pyridine and tetraethyl-ammonium perchlorate affords the salt (565). Oxidative cyclization of the pyridylhydrazone PyCH=NNHPy (Py = 2-pyridyl) by means of mercury(II) acetate yields compound (566). 2,4,6-Triphenylpyrylium fluoroborate reacts with amidrazones ArC(NH2)=NNH2 in the presence of triethylamine to give the pyrazolopyrimidines (567). The tricyclic compound (568) is... [Pg.277]

The employment of suitable organic solvents, such as acetonitrile and acetic acid, with oxidation-resistant supporting electrolytes permits the anodic formation of reactive radical cations from many organic materials. Most aromatic compounds and olefins, as well as those alkanes which have particularly weak C—H bonds, are oxidised in acetonitrile containing fluoroborate or hexafluorophosphate electro-lytes. °" 2 Some aromatic radical cations can be further oxidised to dications within the available potential range. Radical cations in general either deprotonate or attack nucleophiles present in the medium reactions with pyridine, methanol, water, cyanide ion, acetate ion or acetonitrile itself produce addition or substitution products. The complete reactions involve a second electron transfer and coupled chemical... [Pg.760]

By electrodialysis with cation-exchange membranes it is possible to achieve practically complete conversion of the acetate into acetic acid and simultaneously to obtain alkali in the cathode compartment this can be reused for manufacturing purposes. The electrochemical reaction products here will be exclusively hydrogen at the cathode and oxygen at the anode, i.e., participation of the anion in the electrochemical reactions is completely eliminated. If, however, an attempt is made to carry out the electrodialysis in a two-compartment cell, with the acetate solution in the anode compartment, about 75% of the acetic acid is oxidized at the anode and clearly forms mainly ethane and carbon dioxide. [Pg.294]

Nickel acetate tetrahydrate [6018-89-9] Ni(C2H202) 4H2O, is a green powder which has an acetic acid odor, density 1.74 g/cm. When heated, it loses its water of crystallization and then decomposes to form nickel oxide. Nickel acetate is used as a catalyst intermediate, as an intermediate in the formation of other nickel compounds, as a dye mordant, as a sealer for anodized aluminum, and in nickel electroplating (59). [Pg.13]

N 24.12% brick red solid mp, decomps when heated over 300°. Insol in w and the usual organic solvents as well as weak acids and alkalies. Comm prepn (Ref 3) is from thiocyanic acid and/or thiocyanates either by anodic oxidation or by interaction with hydrogen peroxide or halogens. The yield is impure because it contains both H and O. The S content varies between 45 and 55%. Lab prepn of the pure polymer is by reacting the Na salt of 5-chlor-3-mercapto 1,2,4-thiodiazols with either acet, ethanol or w (Refs 1 2)... [Pg.829]

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

The addition of various Kolbe radicals generated from acetic acid, monochloro-acetic acid, trichloroacetic acid, oxalic acid, methyl adipate and methyl glutarate to acceptors such as ethylene, propylene, fluoroolefins and dimethyl maleate is reported in ref. [213]. Also the influence of reaction conditions (current density, olefin-type, olefin concentration) on the product yield and product ratios is individually discussed therein. The mechanism of the addition to ethylene is deduced from the results of adsorption and rotating ring disc studies. The findings demonstrate that the Kolbe radicals react in the surface layer with adsorbed ethylene [229]. In the oxidation of acetate in the presence of 1-octene at platinum and graphite anodes, products that originate from intermediate radicals and cations are observed [230]. [Pg.114]

The photo-Kolbe reaction is the decarboxylation of carboxylic acids at tow voltage under irradiation at semiconductor anodes (TiO ), that are partially doped with metals, e.g. platinum [343, 344]. On semiconductor powders the dominant product is a hydrocarbon by substitution of the carboxylate group for hydrogen (Eq. 41), whereas on an n-TiOj single crystal in the oxidation of acetic acid the formation of ethane besides methane could be observed [345, 346]. Dependent on the kind of semiconductor, the adsorbed metal, and the pH of the solution the extent of alkyl coupling versus reduction to the hydrocarbon can be controlled to some extent [346]. The intermediacy of alkyl radicals has been demonstrated by ESR-spectroscopy [347], that of the alkyl anion by deuterium incorporation [344]. With vicinal diacids the mono- or bisdecarboxylation can be controlled by the light flux [348]. Adipic acid yielded butane [349] with levulinic acid the products of decarboxylation, methyl ethyl-... [Pg.140]

The anodic oxidation reaction of sulphoxides was not much studied, and just a few reports are available so far. The conversion into the corresponding sulphones of some phenyl alkyl and diaryl sulphoxides (oxidation potential for 86 + 2.07 V vs. SCE in acetonitrile/NaC104 electrolyte, Pt anode) has been reported. Similarly, diphenyl suiphoxide was long known to be transformed in a quantitative yield into the sulphone (Pt anode, solvent glacial acetic acid). Additional examples of the oxidation of a suiphoxide function attached to aryl groups are available . [Pg.1043]

In the oxidation of aromatic substances at the anode, radical cations or dications are formed as intermediates and subsequently react with the solvent or with anions of the base electrolyte. For example, depending on the conditions, 1,4-dimethoxybenzene is cyanized after the substitution of one methoxy group, methoxylated after addition of two methoxy groups or acetoxylated after substitution of one hydrogen on the aromatic ring, as shown in Fig. 5.55, where the solvent is indicated over the arrow and the base electrolyte and electrode under the arrow for each reaction HAc denotes acetic acid. [Pg.397]

Some typical results are shown in Table 2. The table shows that oxidation of conjugated dienes such as isoprene, piperylene (1,3-pentadiene), cyclopentadiene and 1,3-cyclohexadiene with a carbon anode in methanol or in acetic acid containing tetraethylammonium p-toluenesulfonate (EtjNOTs) as the supporting electrolyte yields mainly 1,4-addition products2. 1,3-Cyclooctadiene yields a considerable amount of the allylically substituted product. [Pg.754]

The product, l,4-diacetoxy-2-allyl-3-methyl-2-cyclopentene, obtained (45% current efficiency) from 2-allyl-3-methyl-l,3-cyclopentadiene through anodic oxidation with carbon rod anode in acetic acid is successfully used as a starting compound in the synthesis of allethrolone as shown in equation 23. [Pg.754]

When a palladium(II)-hydroquinone system is used as the mediator4 in the anodic oxidation of 1,3-cyclohexadiene in acetic acid, either trans- or cis- 1,4-diacetoxy-2-cyclohexene is formed with rather high selectivity, though the possible formation of 1,2-diacetoxylated compound is not discussed. [Pg.755]

As mentioned above, the electrochemical oxidation of a diene yields 1,2- and 1,4-addition products when the reaction is carried out in the presence of a nucleophile such as methanol or acetic acid. When the oxidation is carried out in the absence of the nucleophile it usually yields a polymeric compound as the major product. The formation of a small amount of the Diels-Alder adduct is, however, observed when the reaction is carried out in CH2CI2 with graphite anode. One of the proposed reaction pathways is shown in equation 68, though it is not clear whether the cyclohexadienyl radical serves as a diene (as shown in equation 6) or a dienophile in the Diels-Alder reaction. [Pg.758]

It is well known that the anodic oxidation of 1,3-dienes in nucelophilic solvents such as methanol and acetic acid gives mainly 1,4-addition products together with a small amount of 1,2-addition products [31]. If the 1,3-dienes substituted... [Pg.63]

Indium-tin-oxide anode, 22 215, 216 Indium trichloride, 14 197, 201 Indo-3-lyl acetic acid, 13 284 Indole-3-acetic acid, 13 35, 38. See also Indoleacetic acids (IAAs) Indole-3-butyric acid, 13 25t... [Pg.469]

Under galvanostatic conditions in 10% acetic acid the thickness D of the anodic oxide is found to depend on anodization time t according to ... [Pg.81]

Fig. 5.3 The thickness of anodic oxides formed galvanostatically on (100) Si in 10% acetic acid as a function of anodization time for three applied current densities. The range... Fig. 5.3 The thickness of anodic oxides formed galvanostatically on (100) Si in 10% acetic acid as a function of anodization time for three applied current densities. The range...
Fig. 5.4 Voltage-time curve for a p-type silicon electrode anodized galvanostatically at 0.1 mA cm"2 in 10% acetic acid. Silicon electrodes were removed from the electrolyte after various anodization times (filled circles) and the thickness of the anodic oxide was measured by ellipsometry (open circles). The curvature of the sample was monitored in situ and is plotted as the value of stress times oxide thickness (filled triangles). The bar graph below the V(t) curve shows a proposed formation mechanism. Galvanostatically a... Fig. 5.4 Voltage-time curve for a p-type silicon electrode anodized galvanostatically at 0.1 mA cm"2 in 10% acetic acid. Silicon electrodes were removed from the electrolyte after various anodization times (filled circles) and the thickness of the anodic oxide was measured by ellipsometry (open circles). The curvature of the sample was monitored in situ and is plotted as the value of stress times oxide thickness (filled triangles). The bar graph below the V(t) curve shows a proposed formation mechanism. Galvanostatically a...
Fig. 5.6 SEM micrographs of (a, b) a thickness inhomogeneity of an anodic oxide grown galvanostatically in 10% acetic acid without a bias limit. Such inhomogeneities develop into... Fig. 5.6 SEM micrographs of (a, b) a thickness inhomogeneity of an anodic oxide grown galvanostatically in 10% acetic acid without a bias limit. Such inhomogeneities develop into...
In fluorosulfonic acid the anodic oxidation of cyclohexane in the presence of different acids (RCO2H) leads to a single product with a rearranged carbon skeleton, a 1-acyl-2-methyl-1-cyclopentene (1) in 50 to 60% yield (Eq. 2) [7, 8]. Also other alkanes have been converted at a smooth platinum anode into the corresponding a,-unsaturated ketones in 42 to 71% yield (Table 1) [8, 9]. Product formation is proposed to occur by oxidation of the hydrocarbon to a carbocation (Eq. 1 and Scheme 1) that rearranges and gets deprotonated to an alkene, which subsequently reacts with an acylium cation from the carboxylic acid to afford the a-unsaturated ketone (1) (Eq. 2) [8-10]. In the absence of acetic acid, for example, in fluorosulfonic acid/sodium... [Pg.128]

Tab. 1 Anodic oxidation of alkanes in fluorosulfonic acid, 1.1 M acetic acid... Tab. 1 Anodic oxidation of alkanes in fluorosulfonic acid, 1.1 M acetic acid...
In the addition to nonactivated alkenes, where the direct anodic oxidation is less, satisfactorily good yields can be achieved when Mn(OAc)2 is used as mediator (Table 8, entries 6, 7). Sorbic acid precursors have been obtained in larger scale and high current efficiency by a Mn(III)-mediated oxidation of acetic acid/acetic anhydride in the presence of butadiene [112]. [Pg.144]

Also azide radicals generated by anodic oxidation of sodium azide in the presence of olefins afford in acetic acid additive dimers, products of allylic substitution and... [Pg.144]

In a potassium acetate-acetic acid medium, 2-fluoro- and 4-fluoroanisole can be oxidized at platinum to afford 2-acetoxy- and 4-acetoxyanisole, respectively [19]. Using a platinum anode in a trifluoroacetic acid-potassium tri-fluoroacetate solution, Blum and Ny-berg [20] electrooxidized hexafluoroben-zene to tetrafluorobenzoquinone in 75% yield, and octafluoronaphthalene was converted into hexafluoronaphthoquinone in 60% yield. [Pg.221]

Different nucleophiles such as methanol, allylsilanes, silyl enol ethers, trimethylsilyl-cyanide, and arenes can be used in this process [62]. When the sulfide itself contains an unsaturated or aromatic fragment and the process is carried out in the absence of a nucleophile, an intramolecular anodic sub-stitution/cyclization might occur [61-63]. Methyl esters of 2-benzothiazolyl-2-alkyl or aryl-acetic acid, oxidized in MeOH/Et4 NCIO4 or H2SO4 in the presence of CUCI2, form 2,2-dimethoxy products (Eq. 7) [64]. [Pg.243]

Because of the efficiency of this process, the anodic oxidation of amino acid precursors can serve as an excellent method for generating chiral building blocks for synthesis. For example (Scheme 17, Eq. 1) [39], the anodic oxidation of (45) was accomplished at a platinum anode using an undivided cell. An acetate nucleophile was used to trap... [Pg.289]

A convenient method to affect the oxidation p- to nitrogen in piperidines is based on the anodic oxidation of N-carboalkoxy piperidines (Scheme 35). The electrochemical oxidation of piperidine (152) in the presence of acetic acid and potassium acetate, for example, afforded a mixture of isomeric 2-hydroxy-3-acetoxypiperidines (153) in a combined yield of 93%, following an aqueous workup [61]. Reduction with sodium boro-hydride severed the C-OH bond. Treatment with acid and then base completed a synthesis of pseudoconhydrine (154). [Pg.335]

Anodic oxidation of 2-t-butylindan in acetic acid led predominantly to side-chain acetoxylation at a Pt or Pb02 anode. The cis/trans ratio of the two acetates is significantly higher in the anodic process than in the related homogeneous reactions, indicating that adsorption at least partially controls the anodic reaction [206, 207]. Menthyl 4-methoxyarylacetate (5) could be... [Pg.424]


See other pages where Acetic acid anodic oxidation is mentioned: [Pg.31]    [Pg.69]    [Pg.377]    [Pg.194]    [Pg.252]    [Pg.1043]    [Pg.184]    [Pg.91]    [Pg.95]    [Pg.602]    [Pg.252]    [Pg.366]    [Pg.395]    [Pg.432]    [Pg.311]    [Pg.143]    [Pg.93]    [Pg.62]    [Pg.85]    [Pg.163]    [Pg.217]    [Pg.292]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Acetalization-oxidation

Acetals oxidation

Acetate oxidation

Acetic oxide

Anode oxidation

Anodes oxides

Anodic oxidation

Anodic oxides

© 2024 chempedia.info