Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Accelerator aniline

Klehr argued against this thiolytic cleavage of sulfenamides, as he did not observe accelerated aniline formation from Ph—NH—SR in the presence of 1-thioglycerol24,38. However,... [Pg.1011]

Crystalline powder, m.p. 174-179 C. Prepared by treatment of thiocarbanilide with sulphur, or by heating aniline, carbon disulphide and nitrobenzene. It is an important rubber accelerator, and on oxidation gives dibenzthiazyl disulphide, also a rubber accelerator. [Pg.254]

Dimeihylamine, C2H7N, (CH3)2NH. Colourless, inflammable liquid with an ammoniacal odour, mp -96" C, b.p. 7°C. Occurs naturally in herring brine. Prepared in the laboratory by treating nitrosodimetbyl-aniline with a hot solution of sodium hydroxide. Dimethylamine is largely used in the manufacture of other chemicals. These include the solvents dimethylacetamide and dimethyl-formamide, the rocket propellant unsym-metrical dimethylhydrazine, surface-active agents, herbicides, fungicides and rubber accelerators. [Pg.260]

CmHizN S, PhNHC(S)NHPh. Colourless flakes m.p. 15rC. Prepared by boiling aniline with carbon disulphide. It is used commercially as a rubber accelerator. [Pg.394]

The conversion of the diazoaminobenzene into aminoazobenzene is promoted by the addition of aniline hydrochloride even more readily than by that of free hydrochloric acid. The aniline hydrochloride dissociates in solution giving hydrochloric acid and aniline the former promotes the formation of the above equilibrium, and the latter by increasing the active mass of the free aniline further accelerates the condensation to aminoazobenzene,... [Pg.208]

Vulcanization was first reported in 1839 with the discovery that heating natural mbber with sulfur and basic lead carbonate produced an improvement in physical properties (2). In 1906, aniline was the first organic compound found to have the abiUty to accelerate the reaction of sulfur with natural mbber (3). Various derivatives of aniline were soon developed which were less toxic and possessed increased acceleration activity. [Pg.219]

Guanidines. Guanidines (10) were one of the first aniline derivatives used as accelerators. They are formed by reaction of two moles of an aromatic amine with one mole of cyanogen chloride. Diphenylguanidine (DPG) has enjoyed a resurgence ia demand as an activator for sulfenamides and a co-accelerator ia tire tread compounds which employ siUca fillers for low rolling resistance. Guanidines alone show too Htde activity to be extensively used as primary accelerators. There were no U.S. producers as of mid-1996. [Pg.222]

Higher heat distortion temperatures are achieved using 4,4 -methylenedi-aniline (diaminodiphenyimethane) and diaminophenyl sulphone, in conjunction with an accelerator, but this is at some expense to chemical resistance. [Pg.755]

The Goodyear vulcanization process takes hours or even days to be produced. Accelerators can be added to reduce the vulcanization time. Accelerators are derived from aniline and other amines, and the most efficient are the mercaptoben-zothiazoles, guanidines, dithiocarbamates, and thiurams (Fig. 32). Sulphenamides can also be used as accelerators for rubber vulcanization. A major change in the sulphur vulcanization was the substitution of lead oxide by zinc oxide. Zinc oxide is an activator of the accelerator system, and the amount generally added in rubber formulations is 3 to 5 phr. Fatty acids (mainly stearic acid) are also added to avoid low curing rates. Today, the cross-linking of any unsaturated rubber can be accomplished in minutes by heating rubber with sulphur, zinc oxide, a fatty acid and the appropriate accelerator. [Pg.638]

Possible impurities of the tertiary amine include primary and secondary amines. The presence of aniline slows the reaction, while the presence of A-methylaniline actually accelerates the polymerization [51]. As the secondary amine may be formed during polymerization (especially in the presence of water) reaction kinetics may be complicated. [Pg.835]

The largest user of phenol in the form of thermosetting resins is the plastics industry. Phenol is also used as a solvent and in the manufacture of intermediates for pesticides, pharmaceuticals, and dyestuffs. Styrene is used in the manufacture of synthetic rubber and polystyrene resins. Phthalic anhydride is used in the manufacture of DMT, alkyd resins, and plasticizers such as phthalates. Maleic anhydride is used in the manufacture of polyesters and, to some extent, for alkyd resins. Minor uses include the manufacture of malathion and soil conditioners. Nitrobenzene is used in the manufacture of aniline, benzidine, and dyestuffs and as a solvent in polishes. Aniline is used in the manufacture of dyes, including azo dyes, and rubber chemicals such as vulcanization accelerators and antioxidants. [Pg.55]

Nitrogenous organic components such as toluidine, quinoline, aniline, etc. all act as inhibitors to the anodic reaction between metal and acid and thereby favour the cathodic reaction and accelerate the process. [Pg.709]

Bifunctional catalysis in nucleophilic aromatic substitution was first observed by Bitter and Zollinger34, who studied the reaction of cyanuric chloride with aniline in benzene. This reaction was not accelerated by phenols or y-pyridone but was catalyzed by triethylamine and pyridine and by bifunctional catalysts such as a-pyridone and carboxylic acids. The carboxylic acids did not function as purely electrophilic reagents, since there was no relationship between catalytic efficiency and acid strength, acetic acid being more effective than chloracetic acid, which in turn was a more efficient catalyst than trichloroacetic acid. For catalysis by the carboxylic acids Bitter and Zollinger proposed the transition state depicted by H. [Pg.414]

The one-pot, three-component synthesis of a 20-membered dihydrotri-azine hbrary was also dramatically accelerated through the use of microwave irradiation [79]. Heating a subset of substituted anilines, cyanoguanidine and acetone in the presence of concentrated hydrochloric acid for 35 min at 90 °C in a single-mode microwave reactor gave the corresponding 2,2-dimethyl-1,2-dihydro-s-triazine hydrochloride 51 in comparable yield to conventional conductive heating methods but in a much shorter reaction time and increased purity (Scheme 21). [Pg.47]

For the synthesis of quinolines and isoquinolines the classical approaches are the Skraup and the Bischler-Napieralski reactions. The reaction of substituted anilines with different carbonyl compounds in acid medium has been reported to be accelerated under microwave irradiation to give differently substituted quinolines and dihydro quinolines [137]. Although the yields are much better and the conditions are milder than under conventional heating, the acidity of the medium may prevent the preparation of acid-sensitive compounds. Thus, alternative approaches have been investigated. Substituted anilines and alkyl vinyl ketones reacted under microwave irradiation on the surface of sihca gel doped with InCU without solvent [137] to furnish good yields of quinohnes 213 (Scheme 77). [Pg.252]

Organic chemical accelerators were not used until 1906, 65 years after the Goodyear-Hancook development of unaccelerated vulcanization (Figure 14.1), when the effect of aniline on sulfur vulcanization was discovered by Oenslayer [3]. [Pg.416]

Brack [81] has illustrated the analysis of antioxidants in a CB-free vulcanisate of unknown composition according to Scheme 2.7. Some components detected by off-line TD-GC-MS (cyclohexylamine, aniline and benzothiazole) were clearly indicative of the CBS accelerator other TD components were identified as the antioxidants BHT, 6PPD, Vulcanox BKF and the antiozonant Vulkazon AFS. In the methanol extract also the stabiliser ODPA was identified. The presence of an aromatic oil was clearly derived from the GC-MS spectra of the thermal and methanol extracts. The procedure is very similar to that of Scheme 2.3. [Pg.41]

Aniline is an aromatic amine used in the manufacture of dyes, dye intermediates, rubber accelerators, and antioxidants. It has also been used as a solvent, in printing inks, and as an intermediate in the manufacture of pharmaceuticals, photographic developers, plastics, isocyanates, hydroquinones, herbicides, fungicides, and ion-exchange resins. It is produced commercially by catalytic vapor phase hydrogenation of nitrobenzene (Benya and Cornish 1994 HSDB 1996). Production of aniline oil was listed at approximately 1 billion pounds in 1993 (U.S. ITC 1994). Chemical and physical properties are listed in Table 1-2. [Pg.36]

In reactivity, the same series of mutagens exhibited positive Hammett correlations for AaiI acid catalysed solvolysis (p — + 0.32) and SN2 reactivity with A-methyl-aniline (p — + 1.7), hydroxide (p — +0.55) and L-cysteine ethyl ester (p — + 1.1), all reactions in which the benzoyloxyl group leaves with electrons and which are therefore accelerated by electron-withdrawing groups. The negative Hammet p-value for... [Pg.104]

N-Nitroso compounds occur in many operations in the rubber industry. Some nitrosamines (nitrosodiphenylamine, N-N-dinitrosopentamethylenetetramine, polymerized N-nitroso 2,2,4-trimethyl-l,2-dihydroquinoline and N-methyl-N-4-dinitroso aniline) are used as organic accelerators and antioxidants in the production of rubber and often the products are found to be contaminated with such compounds [19]. [Pg.55]

Bluish red reactive dyes are almost totally dominated by H acid as the indispensable coupling component. Various mono- or disulphonated anilines or naphthylamines are suitable diazo components, but the outstandingly important one is orthanilic acid (7.96). As with orange and scarlet dyes, haloheterocyclic (Z) reactive systems are linked via the imino group of the H acid residue but sulphatoethylsulphone substituents are found in the diazo component with N-acetyl H acid as the typical coupler. A characteristic problem associated with reactive dyes derived from H acid is their accelerated fading under the simultaneous influence of perspiration and light (section 3.3.4). [Pg.404]


See other pages where Accelerator aniline is mentioned: [Pg.35]    [Pg.522]    [Pg.431]    [Pg.318]    [Pg.219]    [Pg.223]    [Pg.389]    [Pg.861]    [Pg.281]    [Pg.121]    [Pg.411]    [Pg.418]    [Pg.39]    [Pg.1013]    [Pg.6]    [Pg.202]    [Pg.367]    [Pg.740]    [Pg.327]    [Pg.368]    [Pg.413]    [Pg.12]    [Pg.34]    [Pg.700]    [Pg.39]    [Pg.160]    [Pg.253]    [Pg.391]    [Pg.367]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



© 2024 chempedia.info