Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A semiconductor

Irradiation of a semiconductor with light of quantum energy greater than the band gap can lead to electron-hole separation. This can affect adsorption and lead to photocatalyzed or photoassisted reactions [187]. See Section XVIII-9F for some specifics. [Pg.718]

A large variety of organic oxidations, reductions, and rearrangements show photocatalysis at interfaces, usually of a semiconductor. The subject has been reviewed [326,327] some specific examples are the photo-Kolbe reaction (decarboxylation of acetic acid) using Pt supported on anatase [328], the pho-... [Pg.738]

Figure Al.3.8. Schematic energy bands illustrating an insulator (large band gap), a semiconductor (small band gap), a metal (no gap) and a semimetal. In a semimetal, one band is almost filled and another band is almost empty. Figure Al.3.8. Schematic energy bands illustrating an insulator (large band gap), a semiconductor (small band gap), a metal (no gap) and a semimetal. In a semimetal, one band is almost filled and another band is almost empty.
Several factors detennine how efficient impurity atoms will be in altering the electronic properties of a semiconductor. For example, the size of the band gap, the shape of the energy bands near the gap and the ability of the valence electrons to screen the impurity atom are all important. The process of adding controlled impurity atoms to semiconductors is called doping. The ability to produce well defined doping levels in semiconductors is one reason for the revolutionary developments in the construction of solid-state electronic devices. [Pg.115]

Another example of epitaxy is tin growdi on the (100) surfaces of InSb or CdTe a = 6.49 A) [14]. At room temperature, elemental tin is metallic and adopts a bet crystal structure ( white tin ) with a lattice constant of 5.83 A. However, upon deposition on either of the two above-mentioned surfaces, tin is transfonned into the diamond structure ( grey tin ) with a = 6.49 A and essentially no misfit at the interface. Furtliennore, since grey tin is a semiconductor, then a novel heterojunction material can be fabricated. It is evident that epitaxial growth can be exploited to synthesize materials with novel physical and chemical properties. [Pg.927]

As we have discussed earlier in the context of surfaces and interfaces, the breaking of the inversion synnnetry strongly alters the SFIG from a centrosynnnetric medium. Surfaces and interfaces are not the only means of breaking the inversion synnnetry of a centrosynnnetric material. Another important perturbation is diat induced by (static) electric fields. Such electric fields may be applied externally or may arise internally from a depletion layer at the interface of a semiconductor or from a double-charge layer at the interface of a liquid. [Pg.1279]

By inserting a semiconductor x-ray detector into the analysis chamber, one can measure particle induced x-rays. The cross section for particle induced x-ray emission (PIXE) is much greater than that for Rutherford backscattering and PIXE is a fast and convenient method for measuring the identity of atomic species within... [Pg.1828]

The combination of electrochemistry and photochemistry is a fonn of dual-activation process. Evidence for a photochemical effect in addition to an electrochemical one is nonnally seen m the fonn of photocurrent, which is extra current that flows in the presence of light [, 89 and 90]. In photoelectrochemistry, light is absorbed into the electrode (typically a semiconductor) and this can induce changes in the electrode s conduction properties, thus altering its electrochemical activity. Alternatively, the light is absorbed in solution by electroactive molecules or their reduced/oxidized products inducing photochemical reactions or modifications of the electrode reaction. In the latter case electrochemical cells (RDE or chaimel-flow cells) are constmcted to allow irradiation of the electrode area with UV/VIS light to excite species involved in electrochemical processes and thus promote fiirther reactions. [Pg.1945]

Zegenhagen J, Kazimirov A, Scherb G, Kolb D M, Smilgies D-M and Feidenhans l R 1996 X-ray diffraction study of a semiconductor/electrolyte interface n-GaAs(001)/H2S04( Cu) 1996 Surf. Sc/. 352-354 346-51... [Pg.2759]

The application of a small external electric field A to a semiconductor results in a net average velocity component of the carriers (electrons or holes) called the drift velocity, v. The coefficient of proportionality between E and is known as the carrier mobility p. At higher fields, where the drift velocity becomes comparable to the thennal... [Pg.2882]

Instead of plotting tire electron distribution function in tire energy band diagram, it is convenient to indicate tire position of tire Fenni level. In a semiconductor of high purity, tire Fenni level is close to mid-gap. In p type (n type) semiconductors, it lies near tire VB (CB). In very heavily doped semiconductors tire Fenni level can move into eitlier tire CB or VB, depending on tire doping type. [Pg.2883]

Most of our ideas about carrier transport in semiconductors are based on tire assumption of diffusive motion. Wlren tire electron concentration in a semiconductor is not unifonn, tire electrons move diffuse) under tire influence of concentration gradients, giving rise to an additional contribution to tire current. In tliis motion, electrons also undergo collisions and tlieir temporal and spatial distributions are described by the diffusion equation. The... [Pg.2883]

There are many ways of increasing tlie equilibrium carrier population of a semiconductor. Most often tliis is done by generating electron-hole pairs as, for instance, in tlie process of absorjition of a photon witli h E. Under reasonable levels of illumination and doping, tlie generation of electron-hole pairs affects primarily the minority carrier density. However, tlie excess population of minority carriers is not stable it gradually disappears tlirough a variety of recombination processes in which an electron in tlie CB fills a hole in a VB. The excess energy E is released as a photon or phonons. The foniier case corresponds to a radiative recombination process, tlie latter to a non-radiative one. The radiative processes only rarely involve direct recombination across tlie gap. Usually, tliis type of process is assisted by shallow defects (impurities). Non-radiative recombination involves a defect-related deep level at which a carrier is trapped first, and a second transition is needed to complete tlie process. [Pg.2883]

The situation is very different in indirect gap materials where phonons must be involved to conserve momentum. Radiative recombination is inefficient, resulting in long lifetimes. The minority carrier lifetimes in Si reach many ms, again in tire absence of defects. It should be noted tliat long minority carrier lifetimes imply long diffusion lengtlis. Minority carrier lifetime can be used as a convenient quality benchmark of a semiconductor. [Pg.2884]

Thermocouples, bolometers and pyroelectric and semiconductor detectors are also used. The first three are basically resistance thermometers. A semiconductor detector counts photons falling on it by measuring the change in conductivity due to electrons being excited from fhe valence band info fhe conduction band. [Pg.62]

Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted. Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted.
Figure 9.8(a) shows how the conduction band C and the empty valence band V are not separated in a conductor whereas Figure 9.8(c) shows that they are well separated in an insulator. The situation in a semiconductor, shown in Figure 9.8(b), is that the band gap, between the conduction and valence bands, is sufficiently small that promotion of electrons into the conduction band is possible by heating the material. For a semiconductor the Fermi energy E, such that at T= 0 K all levels with E < are filled, lies between the bands as shown. [Pg.350]

Figure 9.8 Conduction band, C, and valence band, V, in (a) a conductor, (b) a semiconductor and (c) an insulator... Figure 9.8 Conduction band, C, and valence band, V, in (a) a conductor, (b) a semiconductor and (c) an insulator...
A semiconductor laser takes advantage of the properties of a junction between a p-type and an n-type semiconductor made from the same host material. Such an n-p combination is called a semiconductor diode. Doping concentrations are quite high and, as a result, the conduction and valence band energies of the host are shifted in the two semiconductors, as shown in Figure 9.10(a). Bands are filled up to the Fermi level with energy E. ... [Pg.351]

A common example of the Peieds distortion is the linear polyene, polyacetylene. A simple molecular orbital approach would predict S hybddization at each carbon and metallic behavior as a result of a half-filled delocalized TT-orbital along the chain. Uniform bond lengths would be expected (as in benzene) as a result of the delocalization. However, a Peieds distortion leads to alternating single and double bonds (Fig. 3) and the opening up of a band gap. As a result, undoped polyacetylene is a semiconductor. [Pg.237]

The light source for excitation of Nd YAG lasers may be a pulsed flashlamp for pulsed operation, a continuous-arc lamp for continuous operation, or a semiconductor laser diode, for either pulsed or continuous operation. The use of semiconductor laser diodes as the pump source for sohd-state lasers became common in the early 1990s. A variety of commercial diode-pumped lasers are available. One possible configuration is shown in Figure 8. The output of the diode is adjusted by composition and temperature to be near 810 nm, ie, near the peak of the neodymium absorption. The diode lasers are themselves relatively efficient and the output is absorbed better by the Nd YAG than the light from flashlamps or arc lamps. Thus diode-pumped sohd-state lasers have much higher efficiency than conventionally pumped devices. Correspondingly, there is less heat to remove. Thus diode-pumped sohd-state lasers represent a laser class that is much more compact and efficient than eadier devices. [Pg.8]

The compact disk player has become a very widespread consumer product for audio reproduction. The information is stored along tracks on the disk in the form of spots of varying reflectivity. The laser beam is focused on a track on the surface of the disk, which is rotated under the beam. The information is recovered by detecting the variations in the reflected light. The compact disk offers very high fideHty because there is no physical contact with the disk. This appHcation has usually employed a semiconductor laser source operating at a wavelength of around 780 nm. Tens of millions of such compact disk players are produced worldwide every year. [Pg.17]


See other pages where A semiconductor is mentioned: [Pg.312]    [Pg.419]    [Pg.419]    [Pg.126]    [Pg.932]    [Pg.1252]    [Pg.1679]    [Pg.1946]    [Pg.1970]    [Pg.2860]    [Pg.2872]    [Pg.2882]    [Pg.419]    [Pg.160]    [Pg.94]    [Pg.197]    [Pg.379]    [Pg.644]    [Pg.340]    [Pg.89]    [Pg.236]    [Pg.164]    [Pg.279]    [Pg.281]    [Pg.345]    [Pg.9]    [Pg.9]    [Pg.112]    [Pg.113]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



A Primer to Semiconductor-Metal Contacts

A poor semiconductor

A- semiconductor (conductivity

Activity of a Semiconductor

Band model of a semiconductor

Electrochemical Properties of a Semiconductor

Energetics of a Semiconductor

Energy Levels of a (Semiconductor) Quantum Dot

Example Network with a Semiconductor Switch

Exchange-Correlation Potential for the Quasi-Particle Bloch States of a Semiconductor

ICPs as Semiconductors

Metal Oxides and Sulfides as Extrinsic Semiconductors

Metal and Semiconductor Surfaces in a Vacuum

Metalloids as semiconductors

Oxide as semiconductor

Polarization in a semiconductor

Quasi-particle states in a semiconductor

Semiconductor A substance that does not

Semiconductor Nanocrystals as Artificial Atoms

Semiconductors as sensitisers for water splitting

Silicon as a semiconductor

Silicon as semiconductor

Special Topic 6.29 Excitons and redox reactions on a semiconductor

Spectroscopic Studies of Gap States and Laser-Induced Structural Transformations in Se-Based As-Free Amorphous Semiconductors

The History and Development of CMP as a Unique Semiconductor Fabrication Technology

Thermal Conductivity of Metals and Semiconductors as a Function

Use as semiconductors

Work function of a semiconductor

© 2024 chempedia.info