Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A Constant General

Prager s rule of kinematic hardening is expressed by a = ce where c is a constant. Generalizing these concepts, the evolution equations for the internal state variables will be taken in the form... [Pg.143]

The modulus term in this equation can be obtained in the same way as in the previous example. However, the difference in this case is the term V. For elastic materials this is called Poissons Ratio and is the ratio of the transverse strain to the axial strain (See Appendix C). For any particular metal this is a constant, generally in the range 0.28 to 0.35. For plastics V is not a constant. It is dependent on time, temperature, stress, etc and so it is often given the alternative names of Creep Contraction Ratio or Lateral Strain Ratio. There is very little published information on the creep contraction ratio for plastics but generally it varies from about 0.33 for hard plastics (such as acrylic) to almost 0.5 for elastomers. Some typical values are given in Table 2.1 but do remember that these may change in specific loading situations. [Pg.58]

The best correlations were obtained with the values of a- constants generally applied to correlating chemical reactions which involve the phenolic oxygen.89 It is typical of the adverse influence of substituents that Eqs. (1) and (2) are significantly different in p values. The two nitro derivatives in both do not lie on the correlation lines. It was found that nitro-substituted aryl esters preferentially undergo alcoholysis and reduction.70... [Pg.129]

We now make the ansatz that the form of this partial differential equation does not change if V = V(x, t) rather than a constant. Generalizing eqn (2.28) to three dimensions, we find the time-dependent Schrodinger equation,... [Pg.30]

Q=k/t+Q where is a constant. Generally, an empirical calibration curve is used. A tall jacketed cylinder with two fine marks, a micro-pipette delivering drops of-uniform size, and a stop-watch, are required. [Pg.13]

The IAEA criteria are a constant general referenee in all the international reviews of nuclear plants. [Pg.196]

Michaelis constant An experimentally determined parameter inversely indicative of the affinity of an enzyme for its substrate. For a constant enzyme concentration, the Michaelis constant is that substrate concentration at which the rate of reaction is half its maximum rate. In general, the Michaelis constant is equivalent to the dissociation constant of the enzyme-substrate complex. [Pg.262]

Equation V-64 is that of a parabola, and electrocapillary curves are indeed approximately parabolic in shape. Because E ax tmd 7 max very nearly the same for certain electrolytes, such as sodium sulfate and sodium carbonate, it is generally assumed that specific adsorption effects are absent, and Emax is taken as a constant (-0.480 V) characteristic of the mercury-water interface. For most other electrolytes there is a shift in the maximum voltage, and is then taken to be Emax 0.480. Some values for the quantities are given in Table V-5 [113]. Much information of this type is due to Gouy [125], although additional results are to be found in most of the other references cited in this section. [Pg.199]

It should be noted that in the cases where y"j[,q ) > 0, the centroid variable becomes irrelevant to the quantum activated dynamics as defined by (A3.8.Id) and the instanton approach [37] to evaluate based on the steepest descent approximation to the path integral becomes the approach one may take. Alternatively, one may seek a more generalized saddle point coordinate about which to evaluate A3.8.14. This approach has also been used to provide a unified solution for the thennal rate constant in systems influenced by non-adiabatic effects, i.e. to bridge the adiabatic and non-adiabatic (Golden Rule) limits of such reactions. [Pg.893]

It is not difficult to show that, for a constant potential, equation (A3.11.218) and equation (A3.11.219) can be solved to give the free particle wavepacket in equation (A3.11.7). More generally, one can solve equation (A3.11.218) and equation (A3.11.219) numerically for any potential, even potentials that are not quadratic, but the solution obtained will be exact only for potentials that are constant, linear or quadratic. The deviation between the exact and Gaussian wavepacket solutions for other potentials depends on how close they are to bemg locally quadratic, which means... [Pg.1002]

Note that the equation for metal-metal ion systems is a special case of this general equation since the reduced state is the metal itself and the concentration of a solid is a constant and omitted from the equation.)... [Pg.101]

Here, M is a constant, symmetric positive definite mass matrix. We assume without loss of generality that M is simply the identity matrix I. Otherwise, this is achieved by the familiar transformation... [Pg.422]

This basic LFER approach has later been extended to the more general concept of fragmentation. Molecules are dissected into substructures and each substructure is seen to contribute a constant inaement to the free-energy based property. The promise of strict linearity does not hold true in most cases, so corrections have to be applied in the majority of methods based on a fragmentation approach. Correction terms are often related to long range interactions such as resonance or steric effects. [Pg.489]

The constants K depend upon the volume of the solvent molecule (assumed to be spherica in slrape) and the number density of the solvent. ai2 is the average of the diameters of solvent molecule and a spherical solute molecule. This equation may be applied to solute of a more general shape by calculating the contribution of each atom and then scaling thi by the fraction of fhat atom s surface that is actually exposed to the solvent. The dispersioi contribution to the solvation free energy can be modelled as a continuous distributioi function that is integrated over the cavity surface [Floris and Tomasi 1989]. [Pg.625]

For temperatures up to 100°, a water bath or steam bath is generally employed. The simplest form is a beaker or an enamelled iron vessel mounted on a suitable stand water is placed in the vessel, which is heated by means of a flame. This arrangement may be used for non-inflammable liquids or for refluxing liquids of low boiling point. Since numerous liquids of low boiling point are highly inflammable, the presence of a naked flame will introduce considerable risk of fire. For such liquids a steam bath or an electrically-heated water bath, provided with a constant-level device, must be used. If the laboratory is equipped with a... [Pg.57]

In the slope-ratio method two sets of solutions are prepared. The first set consists of a constant amount of metal and a variable amount of ligand, chosen such that the total concentration of metal, Cm, is much greater than the total concentration of ligand. Cl- Under these conditions we may assume that essentially all the ligand is complexed. The concentration of a metal-ligand complex of the general... [Pg.407]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]


See other pages where A Constant General is mentioned: [Pg.116]    [Pg.144]    [Pg.13]    [Pg.203]    [Pg.416]    [Pg.13]    [Pg.436]    [Pg.116]    [Pg.144]    [Pg.13]    [Pg.203]    [Pg.416]    [Pg.13]    [Pg.436]    [Pg.119]    [Pg.186]    [Pg.743]    [Pg.23]    [Pg.999]    [Pg.1450]    [Pg.1716]    [Pg.1907]    [Pg.2911]    [Pg.2951]    [Pg.132]    [Pg.514]    [Pg.654]    [Pg.213]    [Pg.271]    [Pg.398]    [Pg.63]    [Pg.96]    [Pg.274]    [Pg.143]    [Pg.253]    [Pg.72]    [Pg.476]    [Pg.203]   


SEARCH



A -constants

© 2024 chempedia.info