Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite chemistry separation

The recovery of petroleum from sandstone and the release of kerogen from oil shale and tar sands both depend strongly on the microstmcture and surface properties of these porous media. The interfacial properties of complex liquid agents—mixtures of polymers and surfactants—are critical to viscosity control in tertiary oil recovery and to the comminution of minerals and coal. The corrosion and wear of mechanical parts are influenced by the composition and stmcture of metal surfaces, as well as by the interaction of lubricants with these surfaces. Microstmcture and surface properties are vitally important to both the performance of electrodes in electrochemical processes and the effectiveness of catalysts. Advances in synthetic chemistry are opening the door to the design of zeolites and layered compounds with tightly specified properties to provide the desired catalytic activity and separation selectivity. [Pg.169]

Ease of separation of tritiated products from a reaction medium is an important feature in the choice of labeling procedure. Sometime ago we used polymer-sup-ported acid and base catalysts [12, 13] to good effect and with the current interest in Green Chemistry one can expect to see more studies where the rate accelerations observed under microwave-enhanced conditions are combined with the use of solid catalysts such as Nafion, or zeolites. [Pg.445]

In 1962 Mobil Oil introduced the use of synthetic zeolite X as a hydrocarbon cracking catalyst In 1969 Grace described the first modification chemistry based on steaming zeolite Y to form an ultrastable Y. In 1967-1969 Mobil Oil reported the synthesis of the high silica zeolites beta and ZSM-5. In 1974 Henkel introduced zeolite A in detergents as a replacement for the environmentally suspect phosphates. By 2008 industry-wide approximately 367 0001 of zeolite Y were in use in catalytic cracking [22]. In 1977 Union Carbide introduced zeolites for ion-exchange separations. [Pg.4]

As documented in Chapter 5, zeolites are very powerful adsorbents used to separate many products from industrial process steams. In many cases, adsorption is the only separation tool when other conventional separation techniques such as distillation, extraction, membranes, crystallization and absorption are not applicable. For example, adsorption is the only process that can separate a mixture of C10-C14 olefins from a mixture of C10-C14 hydrocarbons. It has also been found that in certain processes, adsorption has many technological and economical advantages over conventional processes. This was seen, for example, when the separation of m-xylene from other Cg-aromatics by the HF-BF3 extraction process was replaced by adsorption using the UOP MX Sorbex process. Although zeolite separations have many advantages, there are some disadvantages such as complexity in the separation chemistry and the need to recover and recycle desorbents. [Pg.203]

This is the first book to offer a practical overview of zeolites and their commercial applications. Each chapter is written by a globally recognized and acclaimed leader in the field. The book is organized into three parts. The first part discusses the history and chemistry of zeolites, the second part focuses on separation processes and the third part explores zeolites in the field of catalysis. AH three parts are tied together by their focus on the unique properties of zeolites that allow them to function in different capabilities as an adsorbent, a membrane and a catalyst. Each of the chapters also discusses the impact of zeolites within the industry. [Pg.625]

The discrepancy in numbers between natural and synthetic varieties is an expression of the usefulness of zeolitic materials in industry, a reflection of their unique physicochemical properties. The crystal chemistry of these aluminosilicates provides selective absorbtion and exchange of a remarkably wide range of molecules. Some zeolites have been called molecular sieves. This property is exploited in the purification and separation of various chemicals, such as in obtaining gasoline from crude petroleum, pollution control, or radioactive waste disposal (Mumpton, 1978). The synthesis of zeolites with a particular crystal structure, and thus specific absorbtion characteristics, has become very competitive (Fox, 1985). Small, often barely detectable, changes in composition and structure are now covered by patents. A brief review of the crystal chemistry of this mineral group illustrates their potential and introduces those that occur as fibers. [Pg.68]

The zeolites are also known as molecular sieves because of their capacity to discriminate between molecules they find numerous uses in separation and catalytic processes. Although they appear to be solid particles to the naked eye, they are highly porous, with a typical specific surface area of about 1000 m2/g. Catalysis is discussed in Chapter 9, but the scope of that chapter does not permit detailed discussions of the various types of catalysts and the role of physisorption and chemisorption in catalysis this vignette provides a glimpse of the rationale used in the molecular design of new materials of interest in surface chemistry and how the concepts introduced in Chapter 1 and Chapter 9 fit into the larger scheme. [Pg.50]

The templating theory is based on a stereospecificity which cannot be separated from the chemistry of the cation. Zeolites are crystallized in alkaline solutions, most readily at a pH greater than 11, limiting the cations used in zeolite synthesis to alkali, some alkaline earths, and organic cations... [Pg.135]

The following review is concerned with the synthetic and structural chemistry of molecular alumo-siloxanes, which combine in a molecular entity the elements aluminum and silicon connected by oxygen. They may be regarded as molecular counterparts of alumo-silicates, which have attracted considerable attention owing to their solid-state cage structures (see for example zeolites).1 3 Numerous applications have been found for these solid-state materials for instance the holes and pores can be used in different separation techniques.4,5 Recently the channel and pore structures of zeolites and other porous materials have been used as templates for nano-structured materials and for catalytical purposes.6 9... [Pg.49]

As for other recyclable heterogeneous catalysts, zeolites and related materials can also contribute to the development of environmentally friendly processes in the synthesis of bulk and fine chemicals. The concept of a biomass refinery, capable of separating, modifying and exploiting the numerous constituents of renewable resources, is gaining worldwide acceptance today with a very broad outlook. This chapter has attempted to show that this particular area of carbohydrate chemistry is in itself very rich, both in already acquired knowledge and potential future developments. [Pg.154]


See other pages where Zeolite chemistry separation is mentioned: [Pg.131]    [Pg.289]    [Pg.595]    [Pg.264]    [Pg.561]    [Pg.306]    [Pg.4]    [Pg.264]    [Pg.28]    [Pg.2789]    [Pg.242]    [Pg.181]    [Pg.230]    [Pg.221]    [Pg.251]    [Pg.324]    [Pg.51]    [Pg.54]    [Pg.550]    [Pg.964]    [Pg.136]    [Pg.375]    [Pg.119]    [Pg.597]    [Pg.447]    [Pg.577]    [Pg.579]    [Pg.609]    [Pg.617]    [Pg.220]    [Pg.202]    [Pg.10]    [Pg.36]    [Pg.385]    [Pg.1772]    [Pg.550]    [Pg.964]    [Pg.214]    [Pg.339]   


SEARCH



Separation chemistry

Separation zeolites

Zeolite chemistry

© 2024 chempedia.info