Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wetting selective

K, Ito and Y, Hirayama Resource Recovery from Municipal Refuse by Semi-wet Selective Pulverizing System . Conversion of Refuse to Energy, First International Conference and Technical Exhibition... [Pg.534]

This use of surfactants as controlling agents for wetting, selective wetting and surface modification has numerous practical applications, some of which are described below. [Pg.248]

Prefer the use of low holdup internals or HIGEE (H). Prefer a distillation sequence to minimize inventory of hazardous material (H). Select materials of construction to promote wetting select critical surface tension of the solid to be > the surface tension of the liquid. If the surface tension of the distillate > surface tension of the bottoms (surface tension negative) prefer the use of trays to packings to minimize potential for liquid film breakup. If the surface tension of the distillate < surface tension of the bottoms (surface tension positive), the foam above trays might be unexpectedly stable. [Pg.98]

Six protective groups for alcohols, which may be removed successively and selectively, have been listed by E.J. Corey (1972B). A hypothetical hexahydroxy compound with hydroxy groups 1 to 6 protected as (1) acetate, (2) 2,2,2-trichloroethyl carbonate, (3) benzyl ether, (4) dimethyl-t-butylsilyl ether, (5) 2-tetrahydropyranyl ether, and (6) methyl ether may be unmasked in that order by the reagents (1) KjCO, or NH, in CHjOH, (2) Zn in CHjOH or AcOH, (3) over Pd, (4) F", (5) wet acetic acid, and (6) BBrj. The groups may also be exposed to the same reagents in the order A 5, 2, 1, 3, 6. The (4-methoxyphenyl)methyl group (=MPM = p-methoxybenzyl, PMB) can be oxidized to a benzaldehyde derivative and thereby be removed at room temperature under neutral conditions (Y- Oikawa, 1982 R. Johansson, 1984 T. Fukuyama, 1985). [Pg.157]

The properties of several representative liquid-based ion-selective electrodes are presented in Table 11.3. An electrode using a liquid reservoir can be stored in a dilute solution of analyte and needs no additional conditioning before use. The lifetime of an electrode with a PVC membrane, however, is proportional to its exposure to aqueous solutions. For this reason these electrodes are best stored by covering the membrane with a cap containing a small amount of wetted gauze to... [Pg.483]

The anhydrous salt is prepared by several methods, eg, by reacting ZrCl with liquid anhydrous HP. It is necessary to use an excess of HP which also acts as a wetting agent. The reaction is instantaneous and is carried out in a polyethylene jar or carboy. When the evolution of HCl ceases, the material is transferred to a tray and dried under an atmosphere of nitrogen. By proper selection of equipment, purification of raw material, and drying conditions, materials of spectrographic purity can be produced (4). [Pg.262]

Gasohol in the United States. Over 90% of the fuel ethanol in the United States is produced from com. Typically, 0.035 m (1 bushel) of com yields 9.5 L (2.5 gal) of ethanol. Ethanol is produced by either dry or wet milling (87). Selection of the process depends on market demand for the by-products of the two processes. More than two-thirds of the ethanol in the United States is produced by wet milling. Depending on the process used, the full cost of ethanol after by-product credits has been estimated to be between 0.25—0.53/L ( 1—2/gal) for new plants (88). Eeedstock costs are a significant factor in the production of fuel ethanol. A change in com price of 0.29/m ( 1.00/bushel) affects the costs of ethanol by 0.08/L ( 0.30/gal). [Pg.88]

Heat. Personal monitoring of the environmental conditions which impose a heat stress on a worker is impractical, so fixed station measurement of such parameters as wet bulb globe temperature are usually made (see Temperature measurements). These stations are carefully selected so that the results, plus worker location and workload data, can be combined to yield an overall heat stress estimate. Heat strain, the effect on the human, can be estimated from core body temperature, but this is usually only a research tool. [Pg.110]

Sihcon dioxide layers can be formed using any of several techniques, including thermal oxidation of siUcon, wet anodization, CVD, or plasma oxidation. Thermal oxidation is the dominant procedure used in IC fabrication. The oxidation process selected depends on the thickness and properties of the desired oxide layer. Thin oxides are formed in dry oxygen, whereas thick (>0.5 jim) oxide layers are formed in a water vapor atmosphere (13). [Pg.347]

The formation of the metallic salts is a pyrometaHurgical process, and is commonly referred to as the dry process. The separation of the salts from each other is accompHshed by selective dissolution in water, and is named the wet process. [Pg.45]

The four process control parameters are temperature, pressure, flow, and level. Modem process level detection systems are varied and ubiquitous in modem chemical plants there are thousands of processes requiring Hquid level indication and Hquid level control. From accumulators to wet wells, the need for level devices is based on the need for plant efficiency, safety, quaUty control, and data logging. Unfortunately, no single level measurement technology works rehably on all chemical plant appHcations. This fact has spawned a broad selection of level indication and control device technologies, each of which operates successfully on specific appHcations. [Pg.206]

The aqueous sodium naphthenate phase is decanted from the hydrocarbon phase and treated with acid to regenerate the cmde naphthenic acids. Sulfuric acid is used almost exclusively, for economic reasons. The wet cmde naphthenic acid phase separates and is decanted from the sodium sulfate brine. The volume of sodium sulfate brine produced from dilute sodium naphthenate solutions is significant, on the order of 10 L per L of cmde naphthenic acid. The brine contains some phenolic compounds and must be treated or disposed of in an environmentally sound manner. Sodium phenolates can be selectively neutralized using carbon dioxide and recovered before the sodium naphthenate is finally acidified with mineral acid (29). Recovery of naphthenic acid from aqueous sodium naphthenate solutions using ion-exchange resins has also been reported (30). [Pg.511]

Alloy selection depends on several factors, including electrical properties, alloy melting range, wetting characteristics, resistance to oxidation, mechanical and thermomechanical properties, formation of intermetaUics, and ionic migration characteristics (26). These properties determine whether a particular solder joint can meet the mechanical, thermal, chemical, and electrical demands placed on it. [Pg.532]

Solvent extraction—purification of wet-process phosphoric acid is based on preferential extraction of H PO by an organic solvent vs the cationic impurities present in the acid. Because selectivity of acid over anionic impurities is usually not sufficient, precipitation or evaporation steps are included in the purification process for removal. Cmde wet-process acid is typically concentrated and clarified prior to extraction to remove post-precipitated sludge and improve partition of the acid into the solvent. Concentration also partially eliminates fluoride by evaporation of HF and/or SiF. Chemical precipitation of sulfate (as Ba or Ca salts), fluorosiUcates (as Na salt), and arsenic (as sulfides) may also be used as a prepurification step preceding solvent extraction. [Pg.328]

A powerful feature of wet etching is the abiUty to achieve excellent etch selectivities of one material over another. This can be extremely useful in the fabrication of epitaxial devices with different material layers. Because selective etching allows the removal of specific layers, the final accuracy of the etch can approach that of the epitaxial layers. Etch selectivities of >100 1 have been achieved for citric acid H202 etching of GaAs—AlGaAs and InGaAs—InP stmctures (133). [Pg.381]


See other pages where Wetting selective is mentioned: [Pg.14]    [Pg.66]    [Pg.67]    [Pg.235]    [Pg.194]    [Pg.14]    [Pg.66]    [Pg.67]    [Pg.235]    [Pg.194]    [Pg.408]    [Pg.113]    [Pg.262]    [Pg.408]    [Pg.450]    [Pg.72]    [Pg.295]    [Pg.307]    [Pg.309]    [Pg.53]    [Pg.460]    [Pg.514]    [Pg.149]    [Pg.151]    [Pg.419]    [Pg.252]    [Pg.398]    [Pg.398]    [Pg.544]    [Pg.340]    [Pg.489]    [Pg.4]    [Pg.210]    [Pg.543]    [Pg.311]    [Pg.328]    [Pg.332]    [Pg.373]    [Pg.380]    [Pg.381]   
See also in sourсe #XX -- [ Pg.2 , Pg.88 ]

See also in sourсe #XX -- [ Pg.132 , Pg.230 , Pg.246 , Pg.636 ]

See also in sourсe #XX -- [ Pg.210 ]




SEARCH



© 2024 chempedia.info