Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Layered dioxide

For some materials, the most notable being silicon, heating alone sufiBces to clean the surface. Commercial Si wafers are produced with a thin layer of silicon dioxide covering the surface. This native oxide is inert to reaction with the atmosphere, and therefore keeps the underlying Si material clean. The native oxide layer is desorbed, i.e. removed into the gas phase, by heating the wafer in UHV to a temperature above approximately 1100 °C. This procedure directly fonus a clean, well ordered Si surface. [Pg.303]

Ethyl bromide soon distils over, and collects as heavy oily drops under the water in the receiving flask, evaporation of the very volatile distillate being thus prevented. If the mixture in the flask A froths badly, moderate the heating of the sand-bath. When no more oily drops of ethyl bromide come over, pour the contents of the receiving flask into a separating-funnel, and carefully run oflF the heavy lower layer of ethyl bromide. Discard the upper aqueous layer, and return the ethyl bromide to the funnel. Add an equal volume of 10% sodium carbonate solution, cork the funnel securely and shake cautiously. Owing to the presence of hydrobromic and sulphurous acids in the crude ethyl bromide, a brisk evolution of carbon dioxide occurs therefore release the... [Pg.101]

Hydrobromic acid. Method 1 (from bromine and sulphur dioxide). A mixture of 600 g. (or 188-6 ml.) of bromine, 250 ml. of water and 760 g. of crushed ice is placed in a 1 6 litre round-bottomed flask and a rapid stream of sulphur dioxide (from a siphon of the liquefied gas) is passed into the flask, care being taken that the outlet of the gas-delivery tube is below the surface of the bromine layer. The rate of flow of the gas is adjusted so that it is completely absorbed. It is advisable to cool the flask in ice and also to shake the contents from time to time. The reduction is complete when the mixture assumes a uniform yellowish-brown or yellow colour, which is unaffected by further introduction of sulphur dioxide excess of the latter gas should be avoided as it will be... [Pg.186]

This acid mixture may be prepared (compare Section 11,49, 1) by placing 120 g. (37-5 ml.) of bromine and 130 g. of crushed ice in a 500 ml. flask, cooling the latter in ice, and passing sulphur dioxide (from a siphon of the liquefied gas) into the bromine layer at such a rate that the gas is completely absorb. The flask is shaken occasionally, and the flow of gas is stopped inunediately the red colour due to free bromine has disappeared the mixture will then have a yellow colour. The resulting acid mixture is equivalent to 260 g. of 48 per cent, hydrobromio acid to which 75 g. of concentrated sulphuric acid have been added it need not be dis. tilled for the preparation of n-butyl bromide. [Pg.278]

Dissolve 57 g. of dry malonic acid in 92 5 ml. of dry P3rridine contained in a 500 ml. round-bottomed flask, cool the solution in ice, and add 57 g. (70 ml.) of freshly distilled n-heptaldehyde (oenanthol) with stirring or vigorous shaking. After a part of the aldehyde has been added, the mixture rapidly seta to a mass of crystals. Insert a cotton wool (or calcium chloride) tube into the mouth of the flask and allow the mixture to stand at room temperature for 60 hours with frequent shaking. Finally, warm the mixture on a water bath until the evolution of carbon dioxide ceases (about 8 hours) and then pour into an equal volume of water. Separate the oily layer and shake it with 150 ml. of 25 per cent hydrochloric acid to remove pyridine. Dissolve the product in benzene, wash with water, dry with anhydrous magnesium sulphate, and distil under reduced pressure. Collect the ap-nonenoic acid at 130-13272 mm. The yield is 62 g. [Pg.466]

It is advisable to filter the a-picolyl-lithium solution rapidly through a thin layer of glass wool (to remove any unreacted lithium) on to the solid carbon dioxide. [Pg.932]

Schematic diagram showing how placing a thin layer of highly dispersed carbon onto the surface of a metal filament leads to an induced dipolar field having positive and negative image charges. The positive side is always on the metal, which is much less electronegative than carbon. This positive charge makes it much more difficult to remove electrons from the metal surface. The higher the value of a work function, the more difficult it is to remove an electron. Effectively, the layer of carbon increases the work function of the filament metal. Very finely divided silicon dioxide can be used in place of carbon. Schematic diagram showing how placing a thin layer of highly dispersed carbon onto the surface of a metal filament leads to an induced dipolar field having positive and negative image charges. The positive side is always on the metal, which is much less electronegative than carbon. This positive charge makes it much more difficult to remove electrons from the metal surface. The higher the value of a work function, the more difficult it is to remove an electron. Effectively, the layer of carbon increases the work function of the filament metal. Very finely divided silicon dioxide can be used in place of carbon.
One method for measuring the temperature of the sea is to measure this ratio. Of course, if you were to do it now, you would take a thermometer and not a mass spectrometer. But how do you determine the temperature of the sea as it was 10,000 years ago The answer lies with tiny sea creatures called diatoms. These have shells made from calcium carbonate, itself derived from carbon dioxide in sea water. As the diatoms die, they fall to the sea floor and build a sediment of calcium carbonate. If a sample is taken from a layer of sediment 10,000 years old, the carbon dioxide can be released by addition of acid. If this carbon dioxide is put into a suitable mass spectrometer, the ratio of carbon isotopes can be measured accurately. From this value and the graph of solubilities of isotopic forms of carbon dioxide with temperature (Figure 46.5), a temperature can be extrapolated. This is the temperature of the sea during the time the diatoms were alive. To conduct such experiments in a significant manner, it is essential that the isotope abundance ratios be measured very accurately. [Pg.341]

In a similar vein, mean seawater temperatures can be estimated from the ratio of 0 to 0 in limestone. The latter rock is composed of calcium carbonate, laid down from shells of countless small sea creatures as they die and fall to the bottom of the ocean. The ratio of the oxygen isotopes locked up as carbon dioxide varies with the temperature of sea water. Any organisms building shells will fix the ratio in the calcium carbonate of their shells. As the limestone deposits form, the layers represent a chronological description of the mean sea temperature. To assess mean sea temperatures from thousands or millions of years ago, it is necessary only to measure accurately the ratio and use a precalibrated graph that relates temperatures to isotope ratios in sea water. [Pg.351]

The locations of the tietriangle and biaodal curves ia the phase diagram depead oa the molecular stmctures of the amphiphile and oil, on the concentration of cosurfactant and/or electrolyte if either of these components is added, and on the temperature (and, especially for compressible oils such as propane or carbon dioxide, on the pressure (29,30)). Unfortunately for the laboratory worker, only by measuriag (or correcdy estimatiag) the compositions of T, Af, and B can one be certain whether a certain pair of Hquid layers are a microemulsion and conjugate aqueous phase, a microemulsion and oleic phase, or simply a pair of aqueous and oleic phases. [Pg.148]

Propellants cast into rockets are commonly case-bonded to the motors to achieve maximum volumetric loading density. The interior of the motor is thoroughly cleaned, coated using an insulating material, and then lined with a composition to which the propellant binder adheres under the environmental stresses of the system. The insulation material is generally a mbber-type composition, filled with siUca, titanium dioxide, or potassium titanate. SiUca-filled nitrate mbber and vulcanizable ethylene—propylene mbber have been used. The liner generally consists of the same base polymer as is used in the propellant. It is usually appHed in a thin layer, and may be partially or fully cured before the propellant is poured into the rocket. [Pg.49]


See other pages where Layered dioxide is mentioned: [Pg.653]    [Pg.81]    [Pg.97]    [Pg.105]    [Pg.132]    [Pg.158]    [Pg.273]    [Pg.315]    [Pg.471]    [Pg.483]    [Pg.39]    [Pg.177]    [Pg.277]    [Pg.299]    [Pg.355]    [Pg.357]    [Pg.481]    [Pg.482]    [Pg.485]    [Pg.517]    [Pg.567]    [Pg.735]    [Pg.766]    [Pg.781]    [Pg.899]    [Pg.930]    [Pg.934]    [Pg.965]    [Pg.149]    [Pg.255]    [Pg.34]    [Pg.49]    [Pg.50]    [Pg.51]    [Pg.52]    [Pg.1]    [Pg.230]    [Pg.523]    [Pg.425]   
See also in sourсe #XX -- [ Pg.31 , Pg.106 ]




SEARCH



© 2024 chempedia.info