Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weakness of interaction

Aside from weakness of interaction, the possibility of being characterized as a "one-electron process" provides another criterion by which electron transfer reactions might qualify as being unique. Thus even though the transfer integral is, strictly speaking, a many-electron quantity, since it is a function of the many-electron wavefunctions ( and f) and Hamiltonian (see eq 6), it may be possible to express it approximately as an effective 1-electron resonance integral. [Pg.160]

As is evident from the fomi of the square gradient temi in the free energy fiinctional, equation (A3.3.52). k is like the square of the effective range of interaction. Thus, the dimensionless crossover time depends only weakly on the range of interaction as In (k). For polymer chains of length A, k A. Thus for practical purposes, the dimensionless crossover time is not very different for polymeric systems as compared to the small molecule case. On the other hand, the scaling of to is tln-ough a characteristic time which itself increases linearly with k, and one has... [Pg.740]

However, the CNDO method showed systematic weaknesses that were directly attributable to the approximations outlined above, so that it was superseded by the intermediate m lect of diatomic differential overlap (INDO) method, introduced by Pople, Beveridge, and Dobosh in 1967 [13]. The approximation outlined in Eq. (50) proved to be too severe and was replaced by individual values for the possible different types of interaction between two AOs. These individual values, often designated Cgg, Ggp, Gpp and in the literature, can be adjusted to give better agreement with experiment than was possible for CNDO. However, in INDO the two-center terms remain of the same type as those given in Eqs. (51) and (52) (again, there are many variations). This approximation leads to systematic weaknesses, for instance in treating interactions between lone pairs. [Pg.382]

The way in which these factors operate to produce Type III isotherms is best appreciated by reference to actual examples. Perhaps the most straightforward case is given by organic high polymers (e.g. polytetra-fluoroethylene, polyethylene, polymethylmethacrylate or polyacrylonitrile) which give rise to well defined Type III isotherms with water or with alkanes, in consequence of the weak dispersion interactions (Fig. S.2). In some cases the isotherms have been measured at several temperatures so that (f could be calculated in Fig. 5.2(c) the value is initially somewhat below the molar enthalpy of condensation and rises to qi as adsorption proceeds. In Fig. 5.2(d) the higher initial values of q" are ascribed to surface heterogeneity. [Pg.249]

Fig. 1. Schematic representation of a receptor—substrate (host—guest) complex involving cavity inclusion of the substrate and the formation of different types of weak supramolecular interactions between receptor (hatched) and substrate (dotted). Fig. 1. Schematic representation of a receptor—substrate (host—guest) complex involving cavity inclusion of the substrate and the formation of different types of weak supramolecular interactions between receptor (hatched) and substrate (dotted).
A commercially important example of the special case where one monomer is the same in both copolymers is blends of styrene—acrylonitrile, 1 + 2, or SAN copolymers with styrene—maleic anhydride, 1 + 3, or SMA copolymers. The SAN and SMA copolymers are miscible (128,133,144) so long as the fractions of AN and MA are neatly matched, as shown in Figure 4. This suggests that miscibility is caused by a weak exothermic interaction between AN and MA units (128,133) since miscibility by intramolecular repulsion occurs in regions where 02 7 can be shown (143) by equation 11. [Pg.413]

Sorption of nonionic, nonpolar hydrophobic compounds occurs by weak attractive interactions such as van der Waals forces. Net attraction is the result of dispersion forces the strength of these weak forces is about 4 to 8 kj/mol ( 1 2 kcal/mol). Electrostatic interactions can also be important, especially when a molecule is polar in nature. Attraction potential can develop between polar molecules and the heterogeneous sod surface that has ionic and polar sites, resulting in stronger sorption. [Pg.221]

Most adsorption processes are exothermic (AH is negative). Adsorption processes involving nonspecific interactions are referred to as physical adsorption, a relatively weak, reversible interaction. Processes with stronger interactions (electron transfer) are termed chemisorption. Chemisorption is often irreversible and has higher heat of adsorption than physical adsorption. Most dispersants function by chemisorption, in contrast to surfactants, which... [Pg.147]

The NMR study by Wiithrich and coworkers has shown that there is a cavity between the protein and the DNA in the major groove of the Antennapedia complex. There are several water molecules in this cavity with a residence time with respect to exchange with bulk water in the millisecond to nanosecond range. These observations indicate that at least some of the specific protein-DNA interactions are short-lived and mediated by water molecules. In particular, the interactions between DNA and the highly conserved Gin 50 and the invariant Asn 51 are best rationalized as a fluctuating network of weak-bonding interactions involving interfacial hydration water molecules. [Pg.162]

The second type of interaction, displacement interaction, is depicted in Figure 10. This type of interaction occurs when a strongly polar solute, such as an alcohol, can interact directly with the strongly polar silanol group and displaces the adsorbed solvent layer. Depending on the strength of the interaction between the solute molecules and the silica gel, it may displace the more weakly adsorbed solvent and interact directly with the silica gel but interact with the other solvent layer by sorption. Alternatively, if solute-stationary phase interactions are sufficiently strong, then the solute may displace both solvents and interact directly with the stationary phase surface. [Pg.100]

Another interesting version of the MM model considers a variable excluded-volume interaction between same species particles [92]. In the absence of interactions the system is mapped on the standard MM model which has a first-order IPT between A- and B-saturated phases. On increasing the strength of the interaction the first-order transition line, observed for weak interactions, terminates at a tricritical point where two second-order transitions meet. These transitions, which separate the A-saturated, reactive, and B-saturated phases, belong to the same universality class as directed percolation, as follows from the value of critical exponents calculated by means of time-dependent Monte Carlo simulations and series expansions [92]. [Pg.422]

The high thermal and chemical stability of fluorocarbons, combined with their very weak intermolecular interactions, makes them ideal stationary phases for the separation of a wide variety of organic compounds, including both hydrocarbons and fluorine-containing molecules Fluonnated stationary phases include per-fluoroalkanes, fluorocarbon surfactants, poly(chlorotrifluoroethylene), polyfper-fluoroalkyl) ethers, and other functionalized perfluoro compounds The applications of fluonnated compounds as stationary phases in gas-liquid chroma... [Pg.1029]

Weak intramolecular interactions between sulfur or selenium and nitrogen are a recurrent phenomenon in large biomolecules. They may occur in the same residue or between neighbours of a peptide chain. The formation of four- or five-membered rings of the types 15.1 and 15.2, respectively, is most common. A feature that is unique to proteins is the participation of sulfur atoms in bifurcated N S N contacts. [Pg.295]


See other pages where Weakness of interaction is mentioned: [Pg.164]    [Pg.292]    [Pg.338]    [Pg.205]    [Pg.596]    [Pg.164]    [Pg.292]    [Pg.338]    [Pg.205]    [Pg.596]    [Pg.395]    [Pg.1179]    [Pg.1499]    [Pg.1759]    [Pg.2059]    [Pg.2189]    [Pg.2416]    [Pg.2668]    [Pg.99]    [Pg.588]    [Pg.253]    [Pg.199]    [Pg.173]    [Pg.412]    [Pg.396]    [Pg.347]    [Pg.12]    [Pg.89]    [Pg.318]    [Pg.62]    [Pg.62]    [Pg.161]    [Pg.489]    [Pg.32]    [Pg.129]    [Pg.906]    [Pg.223]    [Pg.6]    [Pg.298]    [Pg.18]    [Pg.63]    [Pg.899]    [Pg.1029]   
See also in sourсe #XX -- [ Pg.11 , Pg.85 , Pg.297 , Pg.341 ]




SEARCH



Pre-gauge theory of weak interactions

Weak interaction

© 2024 chempedia.info